Unmaximized inclusion necessary conditions for nonconvex constrained optimal control problems
Maria Do Rosário de Pinho; Maria Margarida Ferreira; Fernando Fontes[1]
- [1] Officina Mathematica, Universidade do Minho, 4800-058 Guimarães, Portugal
ESAIM: Control, Optimisation and Calculus of Variations (2005)
- Volume: 11, Issue: 4, page 614-632
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] K.E. Brenen, S.L. Campbell and L.R. Petzold, Numerical Solution of Initial-Value Problems in Differential Algebraic Equations. Classics Appl. Math. SIAM, Philadelphia (1996). Zbl0844.65058MR1363258
- [2] F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley, New York (1983). Reprinted as Vol. 5 of Classics Appl. Math. SIAM, Philadelphia (1990). Zbl0696.49002MR709590
- [3] M.d.R. de Pinho, M.M.A. Ferreira and F.A.C.C. Fontes, An Euler-Lagrange inclusion for optimal control problems with state constraints. J. Dynam. Control Syst. 8 (2002) 23–45. Zbl1027.49019
- [4] M.d.R. de Pinho, M.M.A. Ferreira and F.A.C.C. Fontes, Necessary conditions in Euler-Lagrange inclusion form for constrained nonconvex optimal control problems, in Proc. of the 10th Mediterranean Conference on Control and Automation. Lisbon, Portugal (2002).
- [5] M.d.R. de Pinho and A. Ilchmann, Weak maximum principle for optimal control problems with mixed constraints. Nonlinear Anal. Theory Appl. 48 (2002) 1179–1196. Zbl1019.49024
- [6] M.d.R. de Pinho and R.B. Vinter, An Euler-Lagrange inclusion for optimal control problems. IEEE Trans. Aut. Control 40 (1995) 1191–1198. Zbl0827.49014
- [7] M.d.R. de Pinho and R.B. Vinter, Necessary conditions for optimal control problems involving nonlinear differential algebraic equations. J. Math. Anal. Appl. 212 (1997) 493–516. Zbl0891.49013
- [8] M.d.R. de Pinho, R.B. Vinter and H. Zheng, A maximum principle for optimal control problems with mixed constraints. IMA J. Math. Control Inform. 18 (2001) 189–205. Zbl1103.49307
- [9] B.S. Mordukhovich, Maximum principle in problems of time optimal control with nonsmooth constraints. J. Appl. Math. Mech. 40 (1976) 960–969. Zbl0362.49017
- [10] B.S. Mordukhovich, Approximation Methods in Problems of Optimization and Control. Nakua, Moscow; the 2nd edition to appear in Wiley-Interscience (1988). Zbl0643.49001MR945143
- [11] R.T. Rockafellar and B. Wets, Variational Analysis. Springer, Berlin (1998). Zbl0888.49001MR1491362
- [12] R.B. Vinter, Optimal Control. Birkhauser, Boston (2000). Zbl0952.49001MR1756410