The numerical interface coupling of nonlinear hyperbolic systems of conservation laws : II. The case of systems
Edwige Godlewski; Kim-Claire Le Thanh; Pierre-Arnaud Raviart
- Volume: 39, Issue: 4, page 649-692
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topGodlewski, Edwige, Thanh, Kim-Claire Le, and Raviart, Pierre-Arnaud. "The numerical interface coupling of nonlinear hyperbolic systems of conservation laws : II. The case of systems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 39.4 (2005): 649-692. <http://eudml.org/doc/245277>.
@article{Godlewski2005,
abstract = {We study the theoretical and numerical coupling of two hyperbolic systems of conservation laws at a fixed interface. As already proven in the scalar case, the coupling preserves in a weak sense the continuity of the solution at the interface without imposing the overall conservativity of the coupled model. We develop a detailed analysis of the coupling in the linear case. In the nonlinear case, we either use a linearized approach or a coupling method based on the solution of a Riemann problem. We discuss both approaches in the case of the coupling of two fluid models at a material contact discontinuity, the models being the usual gas dynamics equations with different equations of state. We also study the coupling of two-temperature plasma fluid models and illustrate the approach by numerical simulations.},
author = {Godlewski, Edwige, Thanh, Kim-Claire Le, Raviart, Pierre-Arnaud},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {conservation laws; Riemann problem; boundary value problems; interface coupling; finite volume schemes; numerical examples; nonlinear hyperbolic systems; fluid models; gas dynamic; plasma},
language = {eng},
number = {4},
pages = {649-692},
publisher = {EDP-Sciences},
title = {The numerical interface coupling of nonlinear hyperbolic systems of conservation laws : II. The case of systems},
url = {http://eudml.org/doc/245277},
volume = {39},
year = {2005},
}
TY - JOUR
AU - Godlewski, Edwige
AU - Thanh, Kim-Claire Le
AU - Raviart, Pierre-Arnaud
TI - The numerical interface coupling of nonlinear hyperbolic systems of conservation laws : II. The case of systems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 4
SP - 649
EP - 692
AB - We study the theoretical and numerical coupling of two hyperbolic systems of conservation laws at a fixed interface. As already proven in the scalar case, the coupling preserves in a weak sense the continuity of the solution at the interface without imposing the overall conservativity of the coupled model. We develop a detailed analysis of the coupling in the linear case. In the nonlinear case, we either use a linearized approach or a coupling method based on the solution of a Riemann problem. We discuss both approaches in the case of the coupling of two fluid models at a material contact discontinuity, the models being the usual gas dynamics equations with different equations of state. We also study the coupling of two-temperature plasma fluid models and illustrate the approach by numerical simulations.
LA - eng
KW - conservation laws; Riemann problem; boundary value problems; interface coupling; finite volume schemes; numerical examples; nonlinear hyperbolic systems; fluid models; gas dynamic; plasma
UR - http://eudml.org/doc/245277
ER -
References
top- [1] R. Abgrall and S. Karni, Computations of compressible multifluids. J. Comput. Phys. 169 (2001) 594–623. Zbl1033.76029
- [2] J.J. Adimurthi and G.D. Veerappa Gowda, Godunov-type methods for conservation laws with a flux function discontinuous in space. SIAM J. Numer. Anal. 42 (2004) 179–208. Zbl1081.65082
- [3] E. Audusse and B. Perthame, Uniqueness for a scalar conservation law with discontinuous flux via adapted entropies, Inria research report No. 5261 (2004), France. Zbl1071.35079
- [4] D. Bale, R. LeVeque, S. Mitran and J. Rossmanith, A wave propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comput. 24 (2002) 955–978. Zbl1034.65068
- [5] T. Barberon, Modélisation mathématique et numérique de la cavitation dans les écoulements multiphasiques compressibles. Thesis, University of Toulon, France (2002).
- [6] F. Coquel, E. Godlewski, P.-A. Raviart et al., Numerical coupling of models in the context of fluid flows, work in preparation.
- [7] S. Cordier, Hyperbolicity of the hydrodynamic model of plasmas under the quasi-neutrality hypothesis. Math. Methods Appl. Sci. 18 (1995) 627–647. Zbl0828.35076
- [8] B. Després, Lagrangian systems of conservation laws. Invariance properties of Lagrangian systems of conservation laws, approximate Riemann solvers and the entropy condition. Numer. Math. 89 (2001) 99–134. Zbl0990.65098
- [9] S. Diehl, On scalar conservation laws with point source and discontinuous flux function. SIAM J. Numer. Anal. 26 (1995) 1425–1451. Zbl0852.35094
- [10] F. Dubois and P. Le Floch, Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differential Equations 71 (1988) 93–122. Zbl0649.35057
- [11] R. Fedkiw, T. Aslam, B. Merriman and S. Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152 (1999) 457–492. Zbl0957.76052
- [12] G. Gallice, Positive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinates. Numer. Math. 94 (2003) 673–713. Zbl1092.76044
- [13] M. Gisclon, Étude des conditions aux limites pour un système strictement hyperbolique via l’approximation parabolique. J. Math. Pures Appl. 75 (1996) 485–508. Zbl0869.35061
- [14] M. Gisclon and D. Serre, Étude des conditions aux limites pour un système hyperbolique, via l’approximation parabolique. C. R. Acad. Sci. Paris, Série I 319 (1994) 377–382. Zbl0808.35075
- [15] M. Gisclon and D. Serre, Conditions aux limites pour un système strictement hyperbolique fournies par le schéma de Godunov. RAIRO Modél. Math. Anal. Numér. 31 (1997) 359–380. Zbl0873.65087
- [16] E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. Appl. Math. Sci. 118, Springer, New York (1996). Zbl0860.65075MR1410987
- [17] E. Godlewski and P.-A. Raviart, The numerical coupling of nonlinear hyperbolic systems of conservation laws: I. The scalar case. Numer. Math. 97 (2004) 81–130. Zbl1063.65080
- [18] M. Göz and C.-D. Munz, Approximate Riemann solvers for fluid flow with material interfaces. Numerical methods for wave propagation (Manchester, 1995), Kluwer Acad. Publ., Dordrecht. Fluid Mech. Appl. 47 (1998) 211–235. Zbl0962.76572
- [19] J.M. Greenberg, A.Y. Leroux, R. Baraille and A. Noussair, Analysis and approximation of conservation laws with source terms. SIAM J. Numer. Anal. 34 (1997) 1980–2007. Zbl0888.65100
- [20] A. Harten, P.D. Lax and B. van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35–61. Zbl0565.65051
- [21] E. Isaacson and B. Temple, Nonlinear resonance in systems of conservation laws. SIAM J. Appl. Math. 52 (1992) 1260–1278. Zbl0794.35100
- [22] K. Karlsen, N. Risebro and J. Towers, Upwind difference approximations for degenerate parabolic convection-diffusion equations with a discontinuous coefficient. IMA J. Numer. Anal. 22 (2002) 623–664. Zbl1014.65073
- [23] R. Klausen and N. Risebro, Stability of conservation laws with discontinuous coefficients. J. Differential Equations 157 (1999) 41–60. Zbl0935.35097
- [24] C. Klingenberg and N.H. Risebro, Stability of a resonant system of conservation laws modeling polymer flow with gravitation, J. Differential Equations 170 (2001) 344–380. Zbl0977.35083
- [25] S. Kokh, Aspects numériques et théoriques de la modélisation des écoulements diphasiques compressibles par des méthodes de capture d’interface. Thesis, University Paris 6, France (2001).
- [26] K.-C. Le Thanh and P.-A. Raviart, Un modèle de plasma partiellement ionisé. Rapport CEA-R-6036, France (2003).
- [27] W.K. Lyons, Conservation laws with sharp inhomogeneities. Quart. Appl. Math. 40 (1983) 385–393. Zbl0516.35053
- [28] S. Mishra, Convergence of upwind finite difference schemes for a scalar conservation law with indefinite discontinuities in the flux function. Ntnu Preprints on Conservation Laws 2003-077 (2003). Zbl1096.35085MR2177880
- [29] C.-D. Munz, On Godunov-type schemes for Lagrangian gas dynamics. SIAM J. Numer. Anal. (1994), 17–42. Zbl0796.76057
- [30] T. Pougeard Dulimbert, Extraction de faisceaux d’ions à partir de plasmas neutres: Modélisation et simulation numérique. Thesis, University Paris 6, France (2001).
- [31] N. Seguin and J. Vovelle, Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients. Math. Models Methods Appl. Sci. 13 (2003) 221–257. Zbl1078.35011
- [32] D. Serre, Systèmes de lois de conservation I and II. Diderot éditeur, Paris (1996). MR1459988
- [33] J. Towers, A difference scheme for conservation laws with a discontinuous flux: the nonconvex case. SIAM J. Numer. Anal. 39 (2001) 1197–1218. Zbl1055.65104
- [34] Y.B. Zel’dovich and Y.P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena, Vol. II. Academic Press (1967).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.