The numerical interface coupling of nonlinear hyperbolic systems of conservation laws : II. The case of systems

Edwige Godlewski; Kim-Claire Le Thanh; Pierre-Arnaud Raviart

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2005)

  • Volume: 39, Issue: 4, page 649-692
  • ISSN: 0764-583X

Abstract

top
We study the theoretical and numerical coupling of two hyperbolic systems of conservation laws at a fixed interface. As already proven in the scalar case, the coupling preserves in a weak sense the continuity of the solution at the interface without imposing the overall conservativity of the coupled model. We develop a detailed analysis of the coupling in the linear case. In the nonlinear case, we either use a linearized approach or a coupling method based on the solution of a Riemann problem. We discuss both approaches in the case of the coupling of two fluid models at a material contact discontinuity, the models being the usual gas dynamics equations with different equations of state. We also study the coupling of two-temperature plasma fluid models and illustrate the approach by numerical simulations.

How to cite

top

Godlewski, Edwige, Thanh, Kim-Claire Le, and Raviart, Pierre-Arnaud. "The numerical interface coupling of nonlinear hyperbolic systems of conservation laws : II. The case of systems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 39.4 (2005): 649-692. <http://eudml.org/doc/245277>.

@article{Godlewski2005,
abstract = {We study the theoretical and numerical coupling of two hyperbolic systems of conservation laws at a fixed interface. As already proven in the scalar case, the coupling preserves in a weak sense the continuity of the solution at the interface without imposing the overall conservativity of the coupled model. We develop a detailed analysis of the coupling in the linear case. In the nonlinear case, we either use a linearized approach or a coupling method based on the solution of a Riemann problem. We discuss both approaches in the case of the coupling of two fluid models at a material contact discontinuity, the models being the usual gas dynamics equations with different equations of state. We also study the coupling of two-temperature plasma fluid models and illustrate the approach by numerical simulations.},
author = {Godlewski, Edwige, Thanh, Kim-Claire Le, Raviart, Pierre-Arnaud},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {conservation laws; Riemann problem; boundary value problems; interface coupling; finite volume schemes; numerical examples; nonlinear hyperbolic systems; fluid models; gas dynamic; plasma},
language = {eng},
number = {4},
pages = {649-692},
publisher = {EDP-Sciences},
title = {The numerical interface coupling of nonlinear hyperbolic systems of conservation laws : II. The case of systems},
url = {http://eudml.org/doc/245277},
volume = {39},
year = {2005},
}

TY - JOUR
AU - Godlewski, Edwige
AU - Thanh, Kim-Claire Le
AU - Raviart, Pierre-Arnaud
TI - The numerical interface coupling of nonlinear hyperbolic systems of conservation laws : II. The case of systems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 4
SP - 649
EP - 692
AB - We study the theoretical and numerical coupling of two hyperbolic systems of conservation laws at a fixed interface. As already proven in the scalar case, the coupling preserves in a weak sense the continuity of the solution at the interface without imposing the overall conservativity of the coupled model. We develop a detailed analysis of the coupling in the linear case. In the nonlinear case, we either use a linearized approach or a coupling method based on the solution of a Riemann problem. We discuss both approaches in the case of the coupling of two fluid models at a material contact discontinuity, the models being the usual gas dynamics equations with different equations of state. We also study the coupling of two-temperature plasma fluid models and illustrate the approach by numerical simulations.
LA - eng
KW - conservation laws; Riemann problem; boundary value problems; interface coupling; finite volume schemes; numerical examples; nonlinear hyperbolic systems; fluid models; gas dynamic; plasma
UR - http://eudml.org/doc/245277
ER -

References

top
  1. [1] R. Abgrall and S. Karni, Computations of compressible multifluids. J. Comput. Phys. 169 (2001) 594–623. Zbl1033.76029
  2. [2] J.J. Adimurthi and G.D. Veerappa Gowda, Godunov-type methods for conservation laws with a flux function discontinuous in space. SIAM J. Numer. Anal. 42 (2004) 179–208. Zbl1081.65082
  3. [3] E. Audusse and B. Perthame, Uniqueness for a scalar conservation law with discontinuous flux via adapted entropies, Inria research report No. 5261 (2004), France. Zbl1071.35079
  4. [4] D. Bale, R. LeVeque, S. Mitran and J. Rossmanith, A wave propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comput. 24 (2002) 955–978. Zbl1034.65068
  5. [5] T. Barberon, Modélisation mathématique et numérique de la cavitation dans les écoulements multiphasiques compressibles. Thesis, University of Toulon, France (2002). 
  6. [6] F. Coquel, E. Godlewski, P.-A. Raviart et al., Numerical coupling of models in the context of fluid flows, work in preparation. 
  7. [7] S. Cordier, Hyperbolicity of the hydrodynamic model of plasmas under the quasi-neutrality hypothesis. Math. Methods Appl. Sci. 18 (1995) 627–647. Zbl0828.35076
  8. [8] B. Després, Lagrangian systems of conservation laws. Invariance properties of Lagrangian systems of conservation laws, approximate Riemann solvers and the entropy condition. Numer. Math. 89 (2001) 99–134. Zbl0990.65098
  9. [9] S. Diehl, On scalar conservation laws with point source and discontinuous flux function. SIAM J. Numer. Anal. 26 (1995) 1425–1451. Zbl0852.35094
  10. [10] F. Dubois and P. Le Floch, Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differential Equations 71 (1988) 93–122. Zbl0649.35057
  11. [11] R. Fedkiw, T. Aslam, B. Merriman and S. Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152 (1999) 457–492. Zbl0957.76052
  12. [12] G. Gallice, Positive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinates. Numer. Math. 94 (2003) 673–713. Zbl1092.76044
  13. [13] M. Gisclon, Étude des conditions aux limites pour un système strictement hyperbolique via l’approximation parabolique. J. Math. Pures Appl. 75 (1996) 485–508. Zbl0869.35061
  14. [14] M. Gisclon and D. Serre, Étude des conditions aux limites pour un système hyperbolique, via l’approximation parabolique. C. R. Acad. Sci. Paris, Série I 319 (1994) 377–382. Zbl0808.35075
  15. [15] M. Gisclon and D. Serre, Conditions aux limites pour un système strictement hyperbolique fournies par le schéma de Godunov. RAIRO Modél. Math. Anal. Numér. 31 (1997) 359–380. Zbl0873.65087
  16. [16] E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. Appl. Math. Sci. 118, Springer, New York (1996). Zbl0860.65075MR1410987
  17. [17] E. Godlewski and P.-A. Raviart, The numerical coupling of nonlinear hyperbolic systems of conservation laws: I. The scalar case. Numer. Math. 97 (2004) 81–130. Zbl1063.65080
  18. [18] M. Göz and C.-D. Munz, Approximate Riemann solvers for fluid flow with material interfaces. Numerical methods for wave propagation (Manchester, 1995), Kluwer Acad. Publ., Dordrecht. Fluid Mech. Appl. 47 (1998) 211–235. Zbl0962.76572
  19. [19] J.M. Greenberg, A.Y. Leroux, R. Baraille and A. Noussair, Analysis and approximation of conservation laws with source terms. SIAM J. Numer. Anal. 34 (1997) 1980–2007. Zbl0888.65100
  20. [20] A. Harten, P.D. Lax and B. van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35–61. Zbl0565.65051
  21. [21] E. Isaacson and B. Temple, Nonlinear resonance in systems of conservation laws. SIAM J. Appl. Math. 52 (1992) 1260–1278. Zbl0794.35100
  22. [22] K. Karlsen, N. Risebro and J. Towers, Upwind difference approximations for degenerate parabolic convection-diffusion equations with a discontinuous coefficient. IMA J. Numer. Anal. 22 (2002) 623–664. Zbl1014.65073
  23. [23] R. Klausen and N. Risebro, Stability of conservation laws with discontinuous coefficients. J. Differential Equations 157 (1999) 41–60. Zbl0935.35097
  24. [24] C. Klingenberg and N.H. Risebro, Stability of a resonant system of conservation laws modeling polymer flow with gravitation, J. Differential Equations 170 (2001) 344–380. Zbl0977.35083
  25. [25] S. Kokh, Aspects numériques et théoriques de la modélisation des écoulements diphasiques compressibles par des méthodes de capture d’interface. Thesis, University Paris 6, France (2001). 
  26. [26] K.-C. Le Thanh and P.-A. Raviart, Un modèle de plasma partiellement ionisé. Rapport CEA-R-6036, France (2003). 
  27. [27] W.K. Lyons, Conservation laws with sharp inhomogeneities. Quart. Appl. Math. 40 (1983) 385–393. Zbl0516.35053
  28. [28] S. Mishra, Convergence of upwind finite difference schemes for a scalar conservation law with indefinite discontinuities in the flux function. Ntnu Preprints on Conservation Laws 2003-077 (2003). Zbl1096.35085MR2177880
  29. [29] C.-D. Munz, On Godunov-type schemes for Lagrangian gas dynamics. SIAM J. Numer. Anal. (1994), 17–42. Zbl0796.76057
  30. [30] T. Pougeard Dulimbert, Extraction de faisceaux d’ions à partir de plasmas neutres: Modélisation et simulation numérique. Thesis, University Paris 6, France (2001). 
  31. [31] N. Seguin and J. Vovelle, Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients. Math. Models Methods Appl. Sci. 13 (2003) 221–257. Zbl1078.35011
  32. [32] D. Serre, Systèmes de lois de conservation I and II. Diderot éditeur, Paris (1996). MR1459988
  33. [33] J. Towers, A difference scheme for conservation laws with a discontinuous flux: the nonconvex case. SIAM J. Numer. Anal. 39 (2001) 1197–1218. Zbl1055.65104
  34. [34] Y.B. Zel’dovich and Y.P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena, Vol. II. Academic Press (1967). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.