-FEM for three-dimensional elastic plates
Monique Dauge; Christoph Schwab
- Volume: 36, Issue: 4, page 597-630
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topDauge, Monique, and Schwab, Christoph. "$hp$-FEM for three-dimensional elastic plates." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 36.4 (2002): 597-630. <http://eudml.org/doc/245307>.
@article{Dauge2002,
abstract = {In this work, we analyze hierarchic $hp$-finite element discretizations of the full, three-dimensional plate problem. Based on two-scale asymptotic expansion of the three-dimensional solution, we give specific mesh design principles for the $hp$-FEM which allow to resolve the three-dimensional boundary layer profiles at robust, exponential rate. We prove that, as the plate half-thickness $\varepsilon $ tends to zero, the $hp$-discretization is consistent with the three-dimensional solution to any power of $\varepsilon $ in the energy norm for the degree $p=\{\mathcal \{O\}\}(\left|\{\log \varepsilon \}\right|)$ and with $\{\mathcal \{O\}\}(\{p^4\})$ degrees of freedom.},
author = {Dauge, Monique, Schwab, Christoph},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {plates; hp-finite elements; exponential convergence; asymptotic expansion; two-scale asymptotic expansion; energy norm},
language = {eng},
number = {4},
pages = {597-630},
publisher = {EDP-Sciences},
title = {$hp$-FEM for three-dimensional elastic plates},
url = {http://eudml.org/doc/245307},
volume = {36},
year = {2002},
}
TY - JOUR
AU - Dauge, Monique
AU - Schwab, Christoph
TI - $hp$-FEM for three-dimensional elastic plates
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2002
PB - EDP-Sciences
VL - 36
IS - 4
SP - 597
EP - 630
AB - In this work, we analyze hierarchic $hp$-finite element discretizations of the full, three-dimensional plate problem. Based on two-scale asymptotic expansion of the three-dimensional solution, we give specific mesh design principles for the $hp$-FEM which allow to resolve the three-dimensional boundary layer profiles at robust, exponential rate. We prove that, as the plate half-thickness $\varepsilon $ tends to zero, the $hp$-discretization is consistent with the three-dimensional solution to any power of $\varepsilon $ in the energy norm for the degree $p={\mathcal {O}}(\left|{\log \varepsilon }\right|)$ and with ${\mathcal {O}}({p^4})$ degrees of freedom.
LA - eng
KW - plates; hp-finite elements; exponential convergence; asymptotic expansion; two-scale asymptotic expansion; energy norm
UR - http://eudml.org/doc/245307
ER -
References
top- [1] I. Babuška and L. Li, Hierarchic modelling of plates. Comput. & Structures 40 (1991) 419–430.
- [2] I. Babuška and L. Li, The problem of plate modelling – theoretical and computational results. Comput. Methods Appl. Mech. Engrg. 100 (1992) 249–273. Zbl0764.73040
- [3] P. Bolley, J. Camus and M. Dauge, Régularité Gevrey pour le problème de Dirichlet dans des domaines à singularités coniques. Comm. Partial Differential Equations 10 (1985) 391–432. Zbl0573.35024
- [4] P.G. Ciarlet, Mathematical Elasticity II: Theory of Plates. Elsevier Publ., Amsterdam (1997). Zbl0888.73001MR1477663
- [5] M. Dauge, I. Djurdjevic, E. Faou and A. Rössle, Eigenmodes asymptotic in thin elastic plates. J. Math. Pures Appl. 78 (1999) 925–964. Zbl0966.74027
- [6] M. Dauge and I. Gruais, Asymptotics of arbitrary order for a thin elastic clamped plate. I: Optimal error estimates. Asymptot. Anal. 13 (1996) 167–197. Zbl0856.73029
- [7] M. Dauge and I. Gruais, Asymptotics of arbitrary order for a thin elastic clamped plate. II: Analysis of the boundary layer terms. Asymptot. Anal. 16 (1998) 99–124. Zbl0941.74031
- [8] M. Dauge and I. Gruais, Edge layers in thin elastic plates. Comput. Methods Appl. Mech. Engrg. 157 (1998) 335–347. Zbl0961.74040
- [9] M. Dauge, I. Gruais and A. Rössle, The influence of lateral boundary conditions on the asymptotics in thin elastic plates. SIAM J. Math. Anal. 31 (1999/00) 305–345 (electronic). Zbl0958.74034
- [10] E. Faou, Développements asymptotiques dans les coques linéairement élastiques. Thèse, Université de Rennes 1 (2000).
- [11] E. Faou, Élasticité linéarisée tridimensionnelle pour une coque mince : résolution en série formelle en puissances de l’épaisseur. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000) 415–420. Zbl0957.74027
- [12] R.D. Gregory and F.Y. Wan, Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory. J. Elasticity 14 (1984) 27–64. Zbl0536.73047
- [13] B. Guo and I. Babuška, Regularity of the solutions for elliptic problems on nonsmooth domains in . I. Countably normed spaces on polyhedral domains. Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 77–126. Zbl0874.35019
- [14] B. Guo and I. Babuška, Regularity of the solutions for elliptic problems on nonsmooth domains in . II. Regularity in neighbourhoods of edges. Proc. Roy. Soc. Edinburgh Sect. A 127 (1997). Zbl0884.35022MR1453280
- [15] V.A. Kondrat’ev, Boundary-value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc. 16 (1967) 227–313. Zbl0194.13405
- [16] J.M. Melenk and C. Schwab, FEM for reaction-diffusion equations. I. Robust exponential convergence. SIAM J. Numer. Anal. 35 (1998) 1520–1557 (electronic). Zbl0972.65093
- [17] C.B. Morrey and L. Nirenberg, On the analyticity of the solutions of linear elliptic systems of partial differential equations. Comm. Pure Appl. Math. 10 (1957) 271–290. Zbl0082.09402
- [18] C. Schwab, Boundary layer resolution in hierarchical models of laminated composites. RAIRO Modél. Math. Anal. Numér. 28 (1994) 517–537. Zbl0817.73038
- [19] C. Schwab, - and -finite element methods. Theory and applications in solid and fluid mechanics. The Clarendon Press Oxford University Press, New York (1998). Zbl0910.73003MR1695813
- [20] C. Schwab and S. Wright, Boundary layer approximation in hierarchical beam and plate models. J. Elasticity 38 (1995) 1–40. Zbl0834.73040
- [21] E. Stein and S. Ohnimus, Coupled model- and solution-adaptivity in the finite-element method. Comput. Methods Appl. Mech. Engrg. 150 (1997) 327–350. Symposium on Advances in Computational Mechanics, Vol. 2 (Austin, TX, 1997). Zbl0926.74127
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.