h p -FEM for three-dimensional elastic plates

Monique Dauge; Christoph Schwab

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2002)

  • Volume: 36, Issue: 4, page 597-630
  • ISSN: 0764-583X

Abstract

top
In this work, we analyze hierarchic h p -finite element discretizations of the full, three-dimensional plate problem. Based on two-scale asymptotic expansion of the three-dimensional solution, we give specific mesh design principles for the h p -FEM which allow to resolve the three-dimensional boundary layer profiles at robust, exponential rate. We prove that, as the plate half-thickness ε tends to zero, the h p -discretization is consistent with the three-dimensional solution to any power of ε in the energy norm for the degree p = 𝒪 ( log ε ) and with 𝒪 ( p 4 ) degrees of freedom.

How to cite

top

Dauge, Monique, and Schwab, Christoph. "$hp$-FEM for three-dimensional elastic plates." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 36.4 (2002): 597-630. <http://eudml.org/doc/245307>.

@article{Dauge2002,
abstract = {In this work, we analyze hierarchic $hp$-finite element discretizations of the full, three-dimensional plate problem. Based on two-scale asymptotic expansion of the three-dimensional solution, we give specific mesh design principles for the $hp$-FEM which allow to resolve the three-dimensional boundary layer profiles at robust, exponential rate. We prove that, as the plate half-thickness $\varepsilon $ tends to zero, the $hp$-discretization is consistent with the three-dimensional solution to any power of $\varepsilon $ in the energy norm for the degree $p=\{\mathcal \{O\}\}(\left|\{\log \varepsilon \}\right|)$ and with $\{\mathcal \{O\}\}(\{p^4\})$ degrees of freedom.},
author = {Dauge, Monique, Schwab, Christoph},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {plates; hp-finite elements; exponential convergence; asymptotic expansion; two-scale asymptotic expansion; energy norm},
language = {eng},
number = {4},
pages = {597-630},
publisher = {EDP-Sciences},
title = {$hp$-FEM for three-dimensional elastic plates},
url = {http://eudml.org/doc/245307},
volume = {36},
year = {2002},
}

TY - JOUR
AU - Dauge, Monique
AU - Schwab, Christoph
TI - $hp$-FEM for three-dimensional elastic plates
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2002
PB - EDP-Sciences
VL - 36
IS - 4
SP - 597
EP - 630
AB - In this work, we analyze hierarchic $hp$-finite element discretizations of the full, three-dimensional plate problem. Based on two-scale asymptotic expansion of the three-dimensional solution, we give specific mesh design principles for the $hp$-FEM which allow to resolve the three-dimensional boundary layer profiles at robust, exponential rate. We prove that, as the plate half-thickness $\varepsilon $ tends to zero, the $hp$-discretization is consistent with the three-dimensional solution to any power of $\varepsilon $ in the energy norm for the degree $p={\mathcal {O}}(\left|{\log \varepsilon }\right|)$ and with ${\mathcal {O}}({p^4})$ degrees of freedom.
LA - eng
KW - plates; hp-finite elements; exponential convergence; asymptotic expansion; two-scale asymptotic expansion; energy norm
UR - http://eudml.org/doc/245307
ER -

References

top
  1. [1] I. Babuška and L. Li, Hierarchic modelling of plates. Comput. & Structures 40 (1991) 419–430. 
  2. [2] I. Babuška and L. Li, The problem of plate modelling – theoretical and computational results. Comput. Methods Appl. Mech. Engrg. 100 (1992) 249–273. Zbl0764.73040
  3. [3] P. Bolley, J. Camus and M. Dauge, Régularité Gevrey pour le problème de Dirichlet dans des domaines à singularités coniques. Comm. Partial Differential Equations 10 (1985) 391–432. Zbl0573.35024
  4. [4] P.G. Ciarlet, Mathematical Elasticity II: Theory of Plates. Elsevier Publ., Amsterdam (1997). Zbl0888.73001MR1477663
  5. [5] M. Dauge, I. Djurdjevic, E. Faou and A. Rössle, Eigenmodes asymptotic in thin elastic plates. J. Math. Pures Appl. 78 (1999) 925–964. Zbl0966.74027
  6. [6] M. Dauge and I. Gruais, Asymptotics of arbitrary order for a thin elastic clamped plate. I: Optimal error estimates. Asymptot. Anal. 13 (1996) 167–197. Zbl0856.73029
  7. [7] M. Dauge and I. Gruais, Asymptotics of arbitrary order for a thin elastic clamped plate. II: Analysis of the boundary layer terms. Asymptot. Anal. 16 (1998) 99–124. Zbl0941.74031
  8. [8] M. Dauge and I. Gruais, Edge layers in thin elastic plates. Comput. Methods Appl. Mech. Engrg. 157 (1998) 335–347. Zbl0961.74040
  9. [9] M. Dauge, I. Gruais and A. Rössle, The influence of lateral boundary conditions on the asymptotics in thin elastic plates. SIAM J. Math. Anal. 31 (1999/00) 305–345 (electronic). Zbl0958.74034
  10. [10] E. Faou, Développements asymptotiques dans les coques linéairement élastiques. Thèse, Université de Rennes 1 (2000). 
  11. [11] E. Faou, Élasticité linéarisée tridimensionnelle pour une coque mince : résolution en série formelle en puissances de l’épaisseur. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000) 415–420. Zbl0957.74027
  12. [12] R.D. Gregory and F.Y. Wan, Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory. J. Elasticity 14 (1984) 27–64. Zbl0536.73047
  13. [13] B. Guo and I. Babuška, Regularity of the solutions for elliptic problems on nonsmooth domains in 𝐑 3 . I. Countably normed spaces on polyhedral domains. Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 77–126. Zbl0874.35019
  14. [14] B. Guo and I. Babuška, Regularity of the solutions for elliptic problems on nonsmooth domains in 𝐑 3 . II. Regularity in neighbourhoods of edges. Proc. Roy. Soc. Edinburgh Sect. A 127 (1997). Zbl0884.35022MR1453280
  15. [15] V.A. Kondrat’ev, Boundary-value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc. 16 (1967) 227–313. Zbl0194.13405
  16. [16] J.M. Melenk and C. Schwab, H P FEM for reaction-diffusion equations. I. Robust exponential convergence. SIAM J. Numer. Anal. 35 (1998) 1520–1557 (electronic). Zbl0972.65093
  17. [17] C.B. Morrey and L. Nirenberg, On the analyticity of the solutions of linear elliptic systems of partial differential equations. Comm. Pure Appl. Math. 10 (1957) 271–290. Zbl0082.09402
  18. [18] C. Schwab, Boundary layer resolution in hierarchical models of laminated composites. RAIRO Modél. Math. Anal. Numér. 28 (1994) 517–537. Zbl0817.73038
  19. [19] C. Schwab, p - and h p -finite element methods. Theory and applications in solid and fluid mechanics. The Clarendon Press Oxford University Press, New York (1998). Zbl0910.73003MR1695813
  20. [20] C. Schwab and S. Wright, Boundary layer approximation in hierarchical beam and plate models. J. Elasticity 38 (1995) 1–40. Zbl0834.73040
  21. [21] E. Stein and S. Ohnimus, Coupled model- and solution-adaptivity in the finite-element method. Comput. Methods Appl. Mech. Engrg. 150 (1997) 327–350. Symposium on Advances in Computational Mechanics, Vol. 2 (Austin, TX, 1997). Zbl0926.74127

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.