A geometric lower bound on Grad’s number
ESAIM: Control, Optimisation and Calculus of Variations (2009)
- Volume: 15, Issue: 3, page 569-575
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. The Clarendon Press, Oxford University Press, New York (2000). Zbl0957.49001MR1857292
- [2] L. Desvillettes and C. Villani, On a variant of Korn’s inequality arising in statistical mechanics. ESAIM: COCV 8 (2002) 603–619. Zbl1092.82032MR1932965
- [3] L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159 (2005) 245–316. Zbl1162.82316MR2116276
- [4] A. Figalli, F. Maggi and A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities. Preprint (2007). Zbl1196.49033
- [5] C. Villani, Hypocoercivity. Memoirs Amer. Math. Soc. (to appear). Zbl1197.35004MR2562709
- [6] W.P. Ziemer, Weakly differentiable functions. Sobolev spaces and functions of bounded variation. Graduate Texts in Mathematics 120. Springer-Verlag, New York (1989). Zbl0692.46022MR1014685