Convergence of the Schrödinger-Poisson system to the Euler equations under the influence of a large magnetic field
- Volume: 36, Issue: 6, page 1071-1090
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topPuel, Marjolaine. "Convergence of the Schrödinger-Poisson system to the Euler equations under the influence of a large magnetic field." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 36.6 (2002): 1071-1090. <http://eudml.org/doc/245343>.
@article{Puel2002,
abstract = {In this paper, we prove the convergence of the current defined from the Schrödinger-Poisson system with the presence of a strong magnetic field toward a dissipative solution of the Euler equations.},
author = {Puel, Marjolaine},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {quasi-neutral plasmas; semi-classical limit; modulated energy},
language = {eng},
number = {6},
pages = {1071-1090},
publisher = {EDP-Sciences},
title = {Convergence of the Schrödinger-Poisson system to the Euler equations under the influence of a large magnetic field},
url = {http://eudml.org/doc/245343},
volume = {36},
year = {2002},
}
TY - JOUR
AU - Puel, Marjolaine
TI - Convergence of the Schrödinger-Poisson system to the Euler equations under the influence of a large magnetic field
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2002
PB - EDP-Sciences
VL - 36
IS - 6
SP - 1071
EP - 1090
AB - In this paper, we prove the convergence of the current defined from the Schrödinger-Poisson system with the presence of a strong magnetic field toward a dissipative solution of the Euler equations.
LA - eng
KW - quasi-neutral plasmas; semi-classical limit; modulated energy
UR - http://eudml.org/doc/245343
ER -
References
top- [1] A. Arnold and F. Nier, The two-dimensional Wigner-Poisson problem for an electron gas in the charge neutral case. Math. Methods Appl. Sci. 14 (1991) 595–613. Zbl0742.35078
- [2] Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm. Partial Differential Equations 25 (2000) 737–754. Zbl0970.35110
- [3] T. Cazenave, An introduction to nonlinear Schrödinger equations, in: Textos de méthodos Mathemàticas 26. Universidad Federal do Rio de Janeiro (1993).
- [4] C. Cohen-Tannoudji, B. Diu and F. Laloë, Mécanique quantique. Hermann (1973).
- [5] P. Gérard, P.A. Markowich, N.J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms. Comm. Pure Appl. Math. 50 (1997) 323–379. Zbl0881.35099
- [6] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthiers-Villars, Paris (1969). Zbl0189.40603MR259693
- [7] P.-L. Lions, Mathematical topics in fluid mechanics, Vol. 1. Incompressible models. Oxford Lecture in Mathematics and its Applications. Oxford University Press, New York (1996). Zbl0866.76002MR1422251
- [8] P.-L. Lions and T. Paul, Sur les mesures de Wigner. Rev. Mat. Iberoamericana 9 (1993) 553–618. Zbl0801.35117
- [9] P.A. Markowich and N.J. Mauser, The classical limit of a self-consistent quantum-Vlasov equation in D. Math. Models Methods Appl. Sci. 3 (1993) 109–124. Zbl0772.35061
- [10] M. Puel, Convergence of the Schrödinger-Poisson system to the incompressible Euler equations. Preprint LAN, Université Paris VI (2001). Zbl1040.35076MR1944031
- [11] M. Puel, Études variationnelle et asymptotique de problèmes en mécanique des fluides et des plasmas. Ph.D. thesis, Université Paris VI (2001).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.