Asymptotics for the L p -deviation of the variance estimator under diffusion

Paul Doukhan; José R. León

ESAIM: Probability and Statistics (2004)

  • Volume: 8, page 132-149
  • ISSN: 1292-8100

Abstract

top
We consider a diffusion process X t smoothed with (small) sampling parameter ε . As in Berzin, León and Ortega (2001), we consider a kernel estimate α ^ ε with window h ( ε ) of a function α of its variance. In order to exhibit global tests of hypothesis, we derive here central limit theorems for the L p deviations such as 1 h h ε p 2 α ^ ε - α p p - 𝔼 α ^ ε - α p p .

How to cite

top

Doukhan, Paul, and León, José R.. "Asymptotics for the $L^p$-deviation of the variance estimator under diffusion." ESAIM: Probability and Statistics 8 (2004): 132-149. <http://eudml.org/doc/245384>.

@article{Doukhan2004,
abstract = {We consider a diffusion process $X_t$ smoothed with (small) sampling parameter $\varepsilon $. As in Berzin, León and Ortega (2001), we consider a kernel estimate $\widehat\{\alpha \}_\{\varepsilon \}$ with window $h(\varepsilon )$ of a function $\alpha $ of its variance. In order to exhibit global tests of hypothesis, we derive here central limit theorems for the $L^p$ deviations such as\[\hspace*\{-28.45274pt\} \frac\{1\}\{\sqrt\{h\}\}\left(\frac\{h\}\{\varepsilon \}\right)^\{\frac\{p\}\{2\}\}\left( \left\Vert \widehat\{\alpha \}\_\{\varepsilon \}-\{\alpha \}\right\Vert \_p^p- \mathbb \{E\}\left\Vert \widehat\{\alpha \}\_\{\varepsilon \}-\{\alpha \}\right\Vert \_p^p \right). \]},
author = {Doukhan, Paul, León, José R.},
journal = {ESAIM: Probability and Statistics},
keywords = {variance estimator; kernel; $L^p$-deviation; central limit theorem; Variance estimator; -deviation},
language = {eng},
pages = {132-149},
publisher = {EDP-Sciences},
title = {Asymptotics for the $L^p$-deviation of the variance estimator under diffusion},
url = {http://eudml.org/doc/245384},
volume = {8},
year = {2004},
}

TY - JOUR
AU - Doukhan, Paul
AU - León, José R.
TI - Asymptotics for the $L^p$-deviation of the variance estimator under diffusion
JO - ESAIM: Probability and Statistics
PY - 2004
PB - EDP-Sciences
VL - 8
SP - 132
EP - 149
AB - We consider a diffusion process $X_t$ smoothed with (small) sampling parameter $\varepsilon $. As in Berzin, León and Ortega (2001), we consider a kernel estimate $\widehat{\alpha }_{\varepsilon }$ with window $h(\varepsilon )$ of a function $\alpha $ of its variance. In order to exhibit global tests of hypothesis, we derive here central limit theorems for the $L^p$ deviations such as\[\hspace*{-28.45274pt} \frac{1}{\sqrt{h}}\left(\frac{h}{\varepsilon }\right)^{\frac{p}{2}}\left( \left\Vert \widehat{\alpha }_{\varepsilon }-{\alpha }\right\Vert _p^p- \mathbb {E}\left\Vert \widehat{\alpha }_{\varepsilon }-{\alpha }\right\Vert _p^p \right). \]
LA - eng
KW - variance estimator; kernel; $L^p$-deviation; central limit theorem; Variance estimator; -deviation
UR - http://eudml.org/doc/245384
ER -

References

top
  1. [1] J. Beirlant and D.M. Mason, On the asymptotic normality of the L p -norm of empirical functional. Math. Methods Statist. 4 (1995) 1–19. Zbl0831.62019
  2. [2] C. Berzin-Joseph, J.R. León and J. Ortega, Non-linear functionals of the Brownian bridge and some applications. Stoch. Proc. Appl. 92 (2001) 11–30. Zbl1047.60082
  3. [3] P. Brugière, Théorème de limite centrale pour un estimateur non paramétrique de la variance d’un processus de diffusion multidimensionnelle. Ann. Inst. Henri Poincaré, Probab. Stat. 29 (1993) 357–389. Zbl0792.60017
  4. [4] P.D. Ditlevsen, S. Ditlevsen and K.K. Andersen, The fast climate fluctuations during the stadial and interstadial climate states. Ann. Glaciology 35 (2002). 
  5. [5] P. Doukhan, J.R. León and F. Portal, Calcul de la vitesse de convergence dans le théorème central limite vis-à-vis des distances de Prohorov, Dudley et Lévy dans le cas de v. a. dépendantes. Probab. Math. Statist. 6 (1985) 19–27. Zbl0607.60019
  6. [6] V. Genon-Catalot, C. Laredo and D. Picard, Non-parametric estimation of the diffusion coefficient by wavelets methods. Scand. J. Statist. 19 (1992) 317–335. Zbl0776.62033
  7. [7] I.J. Gihman and A.V. Skorohov, Stochastic differential equations. Springer-Verlag, Berlin, New York (1972). Zbl0242.60003MR346904
  8. [8] E. Giné, D. Mason and Yu. Zaitsev, The L 1 -norm density estimator process. To appear in Ann. Prob. Zbl1031.62026
  9. [9] A. Gloter, Parameter estimation for a discrete sampling of an integrated Ornstein-Uhlenbeck process. Statistics 35 (2000) 225–243. Zbl0980.62072
  10. [10] J. Jacod, On continuous conditional martingales and stable convergence in law, sémin. Probab. XXXI, LNM 1655, Springer (1997) 232–246. Zbl0884.60038
  11. [11] P. Major, Multiple Wiener-Itô integrals. Springer-Verlag, New York, Lect. Notes Math. 849 (1981). Zbl0451.60002MR611334
  12. [12] G. Perera and M. Wschebor, Crossings and occupation measures for a class of semimartingales. Ann. Probab. 26 (1998) 253–266. Zbl0943.60019
  13. [13] G. Perera and M. Wschebor, Inference on the variance and smoothing of the paths of diffusions. Ann. Inst. Henri Poincaré, Probab. Stat. 38 (2002) 1009–1022. Zbl1011.62083
  14. [14] E. Rio, About the Lindeberg method for strongly mixing sequences. ESAIM: PS 1 (1995) 35–61. Zbl0869.60021
  15. [15] H.P. Rosenthal, On the subspaces of L p , ( p g t ; 2 ) spanned by sequences of independent random variables. Israël Jour. Math. 8 (1970) 273–303. Zbl0213.19303
  16. [16] V.V. Shergin, On the convergence rate in the central limit theorem for m -dependent random variables. Theor. Proba. Appl. 24 (1979) 782–796. Zbl0447.60023
  17. [17] P. Soulier, Non-parametric estimation of the diffusion coefficient of a diffusion process. Stoch. Anal. Appl. 16 (1998) 185–200. Zbl0894.62093
  18. [18] G. Terdik, Bilinear Stochastic Models and Related problems of Nonlinear Time Series. Springer-Verlag, New York, Lect. Notes Statist. 142 (1999). Zbl0928.62068MR1702281

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.