Asymptotics for the -deviation of the variance estimator under diffusion
ESAIM: Probability and Statistics (2004)
- Volume: 8, page 132-149
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topDoukhan, Paul, and León, José R.. "Asymptotics for the $L^p$-deviation of the variance estimator under diffusion." ESAIM: Probability and Statistics 8 (2004): 132-149. <http://eudml.org/doc/245384>.
@article{Doukhan2004,
abstract = {We consider a diffusion process $X_t$ smoothed with (small) sampling parameter $\varepsilon $. As in Berzin, León and Ortega (2001), we consider a kernel estimate $\widehat\{\alpha \}_\{\varepsilon \}$ with window $h(\varepsilon )$ of a function $\alpha $ of its variance. In order to exhibit global tests of hypothesis, we derive here central limit theorems for the $L^p$ deviations such as\[\hspace*\{-28.45274pt\} \frac\{1\}\{\sqrt\{h\}\}\left(\frac\{h\}\{\varepsilon \}\right)^\{\frac\{p\}\{2\}\}\left( \left\Vert \widehat\{\alpha \}\_\{\varepsilon \}-\{\alpha \}\right\Vert \_p^p- \mathbb \{E\}\left\Vert \widehat\{\alpha \}\_\{\varepsilon \}-\{\alpha \}\right\Vert \_p^p \right). \]},
author = {Doukhan, Paul, León, José R.},
journal = {ESAIM: Probability and Statistics},
keywords = {variance estimator; kernel; $L^p$-deviation; central limit theorem; Variance estimator; -deviation},
language = {eng},
pages = {132-149},
publisher = {EDP-Sciences},
title = {Asymptotics for the $L^p$-deviation of the variance estimator under diffusion},
url = {http://eudml.org/doc/245384},
volume = {8},
year = {2004},
}
TY - JOUR
AU - Doukhan, Paul
AU - León, José R.
TI - Asymptotics for the $L^p$-deviation of the variance estimator under diffusion
JO - ESAIM: Probability and Statistics
PY - 2004
PB - EDP-Sciences
VL - 8
SP - 132
EP - 149
AB - We consider a diffusion process $X_t$ smoothed with (small) sampling parameter $\varepsilon $. As in Berzin, León and Ortega (2001), we consider a kernel estimate $\widehat{\alpha }_{\varepsilon }$ with window $h(\varepsilon )$ of a function $\alpha $ of its variance. In order to exhibit global tests of hypothesis, we derive here central limit theorems for the $L^p$ deviations such as\[\hspace*{-28.45274pt} \frac{1}{\sqrt{h}}\left(\frac{h}{\varepsilon }\right)^{\frac{p}{2}}\left( \left\Vert \widehat{\alpha }_{\varepsilon }-{\alpha }\right\Vert _p^p- \mathbb {E}\left\Vert \widehat{\alpha }_{\varepsilon }-{\alpha }\right\Vert _p^p \right). \]
LA - eng
KW - variance estimator; kernel; $L^p$-deviation; central limit theorem; Variance estimator; -deviation
UR - http://eudml.org/doc/245384
ER -
References
top- [1] J. Beirlant and D.M. Mason, On the asymptotic normality of the -norm of empirical functional. Math. Methods Statist. 4 (1995) 1–19. Zbl0831.62019
- [2] C. Berzin-Joseph, J.R. León and J. Ortega, Non-linear functionals of the Brownian bridge and some applications. Stoch. Proc. Appl. 92 (2001) 11–30. Zbl1047.60082
- [3] P. Brugière, Théorème de limite centrale pour un estimateur non paramétrique de la variance d’un processus de diffusion multidimensionnelle. Ann. Inst. Henri Poincaré, Probab. Stat. 29 (1993) 357–389. Zbl0792.60017
- [4] P.D. Ditlevsen, S. Ditlevsen and K.K. Andersen, The fast climate fluctuations during the stadial and interstadial climate states. Ann. Glaciology 35 (2002).
- [5] P. Doukhan, J.R. León and F. Portal, Calcul de la vitesse de convergence dans le théorème central limite vis-à-vis des distances de Prohorov, Dudley et Lévy dans le cas de v. a. dépendantes. Probab. Math. Statist. 6 (1985) 19–27. Zbl0607.60019
- [6] V. Genon-Catalot, C. Laredo and D. Picard, Non-parametric estimation of the diffusion coefficient by wavelets methods. Scand. J. Statist. 19 (1992) 317–335. Zbl0776.62033
- [7] I.J. Gihman and A.V. Skorohov, Stochastic differential equations. Springer-Verlag, Berlin, New York (1972). Zbl0242.60003MR346904
- [8] E. Giné, D. Mason and Yu. Zaitsev, The -norm density estimator process. To appear in Ann. Prob. Zbl1031.62026
- [9] A. Gloter, Parameter estimation for a discrete sampling of an integrated Ornstein-Uhlenbeck process. Statistics 35 (2000) 225–243. Zbl0980.62072
- [10] J. Jacod, On continuous conditional martingales and stable convergence in law, sémin. Probab. XXXI, LNM 1655, Springer (1997) 232–246. Zbl0884.60038
- [11] P. Major, Multiple Wiener-Itô integrals. Springer-Verlag, New York, Lect. Notes Math. 849 (1981). Zbl0451.60002MR611334
- [12] G. Perera and M. Wschebor, Crossings and occupation measures for a class of semimartingales. Ann. Probab. 26 (1998) 253–266. Zbl0943.60019
- [13] G. Perera and M. Wschebor, Inference on the variance and smoothing of the paths of diffusions. Ann. Inst. Henri Poincaré, Probab. Stat. 38 (2002) 1009–1022. Zbl1011.62083
- [14] E. Rio, About the Lindeberg method for strongly mixing sequences. ESAIM: PS 1 (1995) 35–61. Zbl0869.60021
- [15] H.P. Rosenthal, On the subspaces of , () spanned by sequences of independent random variables. Israël Jour. Math. 8 (1970) 273–303. Zbl0213.19303
- [16] V.V. Shergin, On the convergence rate in the central limit theorem for -dependent random variables. Theor. Proba. Appl. 24 (1979) 782–796. Zbl0447.60023
- [17] P. Soulier, Non-parametric estimation of the diffusion coefficient of a diffusion process. Stoch. Anal. Appl. 16 (1998) 185–200. Zbl0894.62093
- [18] G. Terdik, Bilinear Stochastic Models and Related problems of Nonlinear Time Series. Springer-Verlag, New York, Lect. Notes Statist. 142 (1999). Zbl0928.62068MR1702281
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.