Optimal design of turbines with an attached mass
Boris P. Belinskiy; C. Maeve McCarthy; Terry J. Walters
ESAIM: Control, Optimisation and Calculus of Variations (2003)
- Volume: 9, page 217-230
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topBelinskiy, Boris P., McCarthy, C. Maeve, and Walters, Terry J.. "Optimal design of turbines with an attached mass." ESAIM: Control, Optimisation and Calculus of Variations 9 (2003): 217-230. <http://eudml.org/doc/245403>.
@article{Belinskiy2003,
abstract = {We minimize, with respect to shape, the moment of inertia of a turbine having the given lowest eigenfrequency of the torsional oscillations. The necessary conditions of optimality in conjunction with certain physical parameters admit a unique optimal design.},
author = {Belinskiy, Boris P., McCarthy, C. Maeve, Walters, Terry J.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {optimal design; disk; moment of inertia; Sturm–Liouville problem; least eigenvalue; rearrangement; Helly’s principle; calculus of variations; Sturm-Liouville problem; Helly principle},
language = {eng},
pages = {217-230},
publisher = {EDP-Sciences},
title = {Optimal design of turbines with an attached mass},
url = {http://eudml.org/doc/245403},
volume = {9},
year = {2003},
}
TY - JOUR
AU - Belinskiy, Boris P.
AU - McCarthy, C. Maeve
AU - Walters, Terry J.
TI - Optimal design of turbines with an attached mass
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2003
PB - EDP-Sciences
VL - 9
SP - 217
EP - 230
AB - We minimize, with respect to shape, the moment of inertia of a turbine having the given lowest eigenfrequency of the torsional oscillations. The necessary conditions of optimality in conjunction with certain physical parameters admit a unique optimal design.
LA - eng
KW - optimal design; disk; moment of inertia; Sturm–Liouville problem; least eigenvalue; rearrangement; Helly’s principle; calculus of variations; Sturm-Liouville problem; Helly principle
UR - http://eudml.org/doc/245403
ER -
References
top- [1] L.C. Andrews, Elementary Partial Differential Equations with Boundary Value Problems. Academic Press, Orlando, Florida (1986).
- [2] L. Collatz, Eigenwertaufgaben Mit Technischen Anwendungen. Akademische Verlagsgesellschaft, Geest Portig K.-G., Leipzig (1963) 41-42 (in German). Zbl0035.17504MR152101
- [3] S.J. Cox, The Two Phase Drum with the Deepest Base Note. Japan J. Ind. Appl. Math. 8 (1991) 345-355. Zbl0755.35029MR1137646
- [4] S.J. Cox and C.M. McCarthy, The Shape of the Tallest Column. SIAM J. Math. Anal. 29 (1998) 1-8. Zbl0913.34072MR1617743
- [5] C.L. Dym, On some recent approaches to structural optimization. J. Sounds & Vibration 32 (1974) 49-70. Zbl0287.73053
- [6] D.B. Hinton, Eigenfunction expansions for a singular eigenvalue problem with eigenparameter in the boundary condition. SIAM J. Math. Anal. 12 (1981) 572-584. Zbl0458.34014MR617716
- [7] D.B. Hinton, An expansion theorem for an eigenvalue problem with eigenvalue parameter in the boundary condition. Quart. J. Math. Oxford 2 (1979) 33-42. Zbl0427.34023MR528889
- [8] J.B. Keller and F.I. Niordson, The tallest column. J. Math. Mech. 16 (1966) 433-446. Zbl0151.37702MR213089
- [9] G. Polya and G. Szego, Isoperimetric Inequalites in Mathematical Physics. Princeton University Press, Princeton, NJ, Ann. Math. Stud. 27 (1951). Zbl0044.38301MR43486
- [10] D. Porter and D. Stirling, Integral Equations. Cambridge University Press, Cambridge, UK (1990). Zbl0714.45001MR1111247
- [11] W. Rudin, Principles of Mathematical Analysis, 3rd Ed. McGraw-Hill, New York (1976). Zbl0346.26002MR385023
- [12] J.E. Taylor, Minimum mass bar for axial vibrations at specified natural frequency. AIAA J. 5 (1967) 1911-1913.
- [13] J.E. Taylor, The strongest column: The energy approach. J. Appl. Mech. 34 (1967) 486-487.
- [14] J.E. Taylor and C.Y. Liu, On the optimal design of columns. AIAA J. 6 (1968) 1497-1502. Zbl0169.56001
- [15] M.J. Turner, Design of minimum mass structures with specified natural frequencies. AIAA J. 5 (1967) 406-412. Zbl0149.23202
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.