Turnpike theorems by a value function approach
Alain Rapaport; Pierre Cartigny
ESAIM: Control, Optimisation and Calculus of Variations (2004)
- Volume: 10, Issue: 1, page 123-141
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi. Springer-Verlag, Paris-Heidelberg-New York (1994). Zbl0819.35002MR1613876
- [2] D.J. Bell and D.H. Jacobson, Singular Optimal Control Problems. Academic Press, London (1975). Zbl0338.49006MR405195
- [3] J. Blot and P. Cartigny, Optimality in Infinite Horizon Variational Problems under Signs Conditions. J. Optim. Theory Appl. 106 (2000) 411–419. Zbl1004.49014
- [4] J. Blot and P. Michel, First-Order Necessary Conditions for the Infinite-Horizon Variational Problems. J. Optim. Theory Appl. 88 (1996) 339–364. Zbl0843.49014
- [5] P. Cartigny and P. Michel, On a Sufficient Transversality Condition for Infinite Horizon Optimal Control Problems. Automatica 39 (2003) 1007–1010. Zbl1028.49019
- [6] C.W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources. Wiley, New York (1976). Zbl0364.90002MR416658
- [7] I. Ekeland, Some Variational Problems Arising from Mathematical Economics. Springer-Verlag, Lecture Notes in Math. 1330 (1986). Zbl0659.90028MR963066
- [8] R.F. Hartl and G. Feichtinger, A New Sufficient Condition for Most Rapid Approach Paths. J. Optim. Theory Appl. 54 (1987). Zbl0597.49015MR895745
- [9] M.G. Crandall and P.-L. Lions, Viscosity Solutions of Hamilton-Jacobi Equations. Trans. Americ. Math. 277 (1983) 1–42. Zbl0599.35024
- [10] A. Miele, Extremization of Linear Integrals by Green’s Theorem, Optimization Technics, G. Leitmann Ed. Academic Press, New York (1962) 69–98.
- [11] A. Rapaport and P. Cartigny, Théorème de l’autoroute et équation d’Hamilton-Jacobi. C.R. Acad. Sci. 335 (2002) 1091–1094. Zbl1016.49026