Displaying similar documents to “Turnpike theorems by a value function approach”

Turnpike theorems by a value function approach

Alain Rapaport, Pierre Cartigny (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Turnpike theorems deal with the optimality of trajectories reaching a singular solution, in calculus of variations or optimal control problems. For scalar calculus of variations problems in infinite horizon, linear with respect to the derivative, we use the theory of viscosity solutions of Hamilton-Jacobi equations to obtain a unique characterization of the value function. With this approach, we extend for the scalar case the classical result based on Green theorem, when there is uniqueness...

Viscosity solutions for an optimal control problem with Preisach hysteresis nonlinearities

Fabio Bagagiolo (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study a finite horizon problem for a system whose evolution is governed by a controlled ordinary differential equation, which takes also account of a hysteretic component: namely, the output of a Preisach operator of hysteresis. We derive a discontinuous infinite dimensional Hamilton–Jacobi equation and prove that, under fairly general hypotheses, the value function is the unique bounded and uniformly continuous viscosity solution of the corresponding Cauchy problem.

Viscosity solutions for an optimal control problem with Preisach hysteresis nonlinearities

Fabio Bagagiolo (2004)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study a finite horizon problem for a system whose evolution is governed by a controlled ordinary differential equation, which takes also account of a hysteretic component: namely, the output of a Preisach operator of hysteresis. We derive a discontinuous infinite dimensional Hamilton–Jacobi equation and prove that, under fairly general hypotheses, the value function is the unique bounded and uniformly continuous viscosity solution of the corresponding Cauchy problem.