The treatment of “pinching locking” in -shell elements
Dominique Chapelle; Anca Ferent; Patrick Le Tallec[1]
- [1] Ecole Polytechnique, 91128 Palaiseau Cedex, France.
- Volume: 37, Issue: 1, page 143-158
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] K.J. Bathe, Finite Element Procedures. Prentice Hall (1996). Zbl0994.74001
- [2] K.J. Bathe, A. Iosilevich and D. Chapelle, An evaluation of the MITC shell elements. Comput. & Structures 75 (2000) 1–30.
- [3] M. Bischoff and E. Ramm, Shear deformable shell elements for large strains and rotations. Internat. J. Numer. Methods Engrg. 40 (1997) 4427–4449. Zbl0892.73054
- [4] M. Bischoff and E. Ramm, On the physical significance of higher order kinematic and static variables in a three-dimensional shell. Internat. J. Solids Structures 37 (2000) 6933–6960. Zbl1003.74045
- [5] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991). Zbl0788.73002MR1115205
- [6] D. Chapelle, Towards the convergence of 3D and shell finite elements? Proceedings: Enumath 2001 (in press). Zbl1179.74137
- [7] D. Chapelle and K.J. Bathe, Fundamental considerations for the finite element analysis of shell structures. Comput. & Structures 66 (1998) 19–36. Zbl0934.74073
- [8] D. Chapelle and K.J. Bathe, The mathematical shell model underlying general shell elements. Internat. J. Numer. Methods Engrg. 48 (2000) 289–313. Zbl0991.74067
- [9] D. Chapelle and K.J. Bathe, The Finite Element Analysis of Shells - Fundamentals. Springer-Verlag (2003). Zbl1103.74003MR2143259
- [10] D. Chapelle, A. Ferent and K.J. Bathe, 3D-shell finite elements and their underlying model. M3AS (submitted). Zbl1058.74078
- [11] P.G. Ciarlet, The Finite Element Methods for Elliptic Problems. North-Holland (1978). Zbl0999.65129
- [12] N. El-Abbasi and S.A. Meguid, A new shell element accounting for through-thickness deformation. Comput. Methods Appl. Mech. Engrg. 189 (2000) 841–862. Zbl1011.74068
- [13] V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag (1986). Zbl0585.65077MR851383
- [14] R. Hauptmann, K. Schweizerhof and S. Doll, Extension of the ‘solid-shell’ concept for application to large elastic and large elastoplastic deformations. Internat. J. Numer. Methods Engrg. 49 (2000) 1121–1141. Zbl1048.74041