# Numerical study of two sparse AMG-methods

- Volume: 37, Issue: 1, page 133-142
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topMartikainen, Janne. "Numerical study of two sparse AMG-methods." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 37.1 (2003): 133-142. <http://eudml.org/doc/245488>.

@article{Martikainen2003,

abstract = {A sparse algebraic multigrid method is studied as a cheap and accurate way to compute approximations of Schur complements of matrices arising from the discretization of some symmetric and positive definite partial differential operators. The construction of such a multigrid is discussed and numerical experiments are used to verify the properties of the method.},

author = {Martikainen, Janne},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},

keywords = {algebraic multigrid; Schur complement; Lagrange multipliers; Laplace equation; finite element; numerical experiments; preconditioning; unstructured grids},

language = {eng},

number = {1},

pages = {133-142},

publisher = {EDP-Sciences},

title = {Numerical study of two sparse AMG-methods},

url = {http://eudml.org/doc/245488},

volume = {37},

year = {2003},

}

TY - JOUR

AU - Martikainen, Janne

TI - Numerical study of two sparse AMG-methods

JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

PY - 2003

PB - EDP-Sciences

VL - 37

IS - 1

SP - 133

EP - 142

AB - A sparse algebraic multigrid method is studied as a cheap and accurate way to compute approximations of Schur complements of matrices arising from the discretization of some symmetric and positive definite partial differential operators. The construction of such a multigrid is discussed and numerical experiments are used to verify the properties of the method.

LA - eng

KW - algebraic multigrid; Schur complement; Lagrange multipliers; Laplace equation; finite element; numerical experiments; preconditioning; unstructured grids

UR - http://eudml.org/doc/245488

ER -

## References

top- [1] I. Babuška, The finite element method with Lagrangian multipliers. Numer. Math. 20 (1972/73) 179–192. Zbl0258.65108
- [2] C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XI, Paris (1989–1991) 13–51. Longman Sci. Tech., Harlow (1994). Zbl0797.65094
- [3] J.H. Bramble, J.E. Pasciak and A.H. Schatz, The construction of preconditioners for elliptic problems by substructuring. I. Math. Comp. 47 (1986) 103–134. Zbl0615.65112
- [4] J.H. Bramble, J.E. Pasciak and Jinchao Xu, Parallel multilevel preconditioners. Math. Comp. 55 (1990) 1–22. Zbl0703.65076
- [5] Qianshun Chang, Yau Shu Wong and Hanqing Fu, On the algebraic multigrid method. J. Comput. Phys. 125 (1996) 279–292. Zbl0857.65037
- [6] M. Dryja, A capacitance matrix method for Dirichlet problem on polygon region. Numer. Math. 39 (1982) 51–64. Zbl0478.65062
- [7] R. Glowinski, T. Hesla, D.D. Joseph, T.-W. Pan and J. Periaux, Distributed Lagrange multiplier methods for particulate flows, in Computational Science for the 21st Century, M.-O. Bristeau, G. Etgen, W. Fitzgibbon, J.L. Lions, J. Periaux and M.F. Wheeler Eds., Wiley (1997) 270–279. Zbl0919.76077
- [8] R. Glowinski, Tsorng-Whay Pan and J. Périaux, A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Engrg. 111 (1994) 283–303. Zbl0845.73078
- [9] G.H. Golub and D. Mayers, The use of preconditioning over irregular regions, in Computing methods in applied sciences and engineering VI, Versailles (1983) 3–14. North-Holland, Amsterdam (1984). Zbl0564.65067
- [10] A. Greenbaum, Iterative methods for solving linear systems. SIAM, Philadelphia, PA (1997). Zbl0883.65022MR1474725
- [11] F. Kickinger, Algebraic multi-grid for discrete elliptic second-order problems, in Multigrid methods V, Stuttgart (1996) 157–172. Springer, Berlin (1998). Zbl0926.65128
- [12] Yu.A. Kuznetsov, Efficient iterative solvers for elliptic finite element problems on nonmatching grids. Russian J. Numer. Anal. Math. Modelling 10 (1995) 187–211. Zbl0839.65031
- [13] Yu.A. Kuznetsov, Overlapping domain decomposition with non-matching grids. East-West J. Numer. Math. 6 (1998) 299–308. Zbl0918.65075
- [14] R.A.E. Mäkinen, T. Rossi and J. Toivanen, A moving mesh fictitious domain approach for shape optimization problems. ESAIM: M2AN 34 (2000) 31–45. Zbl0948.65064
- [15] J. Martikainen, T. Rossi and J. Toivanen, Multilevel preconditioners for Lagrange multipliers in domain imbedding. Electron. Trans. Numer. Anal. (to appear). Zbl1030.65129MR1991267
- [16] G. Meurant, A multilevel AINV preconditioner. Numer. Algorithms 29 (2002) 107–129. Zbl1044.65036
- [17] J.W. Ruge and K. Stüben, Algebraic multigrid. SIAM, Philadelphia, PA, Multigrid methods (1987) 73–130.
- [18] D. Silvester and A. Wathen, Fast iterative solution of stabilised Stokes systems. II. Using general block preconditioners. SIAM J. Numer. Anal. 31 (1994) 1352–1367. Zbl0810.76044
- [19] C.H. Tong, T.F. Chan, and C.-C. Jay Kuo, A domain decomposition preconditioner based on a change to a multilevel nodal basis. SIAM J. Sci. Statist. Comput. 12 (1991) 1486–1495. Zbl0744.65084

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.