On the long-time behaviour of a class of parabolic SPDE’s : monotonicity methods and exchange of stability
Benjamin Bergé; Bruno Saussereau
ESAIM: Probability and Statistics (2005)
- Volume: 9, page 254-276
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] L. Arnold, Stochastic Differential Equations: Theory and Applications. John Wiley and Sons, New York (1974). Zbl0278.60039MR443083
- [2] D.G. Aronson and H.F. Weinberger, Nonlinear dynamics in population genetics, combustion and nerve pulse propagation. Lect. Notes Math. 446 (1975) 5–49. Zbl0325.35050
- [3] B. Bergé, I.D. Chueshov and P.A. Vuillermot, On the behavior of solutions to certain parabolic SPDE’s driven by Wiener processes. Stoch. Proc. Appl. 92 (2001) 237–263. Zbl1047.60062
- [4] H. Brézis, Analyse fonctionnelle, théorie et applications. Masson, Paris (1993). Zbl0511.46001MR697382
- [5] I.D. Chueshov, Monotone Random Systems: Theory and Applications. Lect. Notes Math., Springer, Berlin 1779 (2002). Zbl1023.37030MR1902500
- [6] I.D. Chueshov and P.A. Vuillermot, Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Stratonovitch’s case. Probab. Theory Relat. Fields 112 (1998) 149–202. Zbl0914.35021
- [7] I.D. Chueshov and P.A. Vuillermot, Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Itô’s case. Stochastic Anal. Appl. 18 (2000) 581–615. Zbl0968.60058
- [8] I.I. Gihman and A.V. Skorohod, Stochastic Differential Equations. Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 72. Springer, Berlin (1972). Zbl0242.60003MR346904
- [9] G. Hetzer, W. Shen and S. Zhu, Asymptotic behavior of positive solutions of random and stochastic parabolic equations of fisher and Kolmogorov type. J. Dyn. Diff. Eqs. 14 (2002) 139–188. Zbl0994.35125
- [10] R.Z. Hasminskii, Stochastic Stability of Differentiel Equations. Alphen, Sijthoff and Nordhof (1980). MR600653
- [11] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Mathematical Library. North-Holland, Kodansha 24 (1981). Zbl0495.60005MR1011252
- [12] A. Kolmogoroff, I. Petrovsky and N. Piscounoff, Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. de l’Univ. d’État à Moscou, série internationale 1 (1937) 1–25. Zbl0018.32106
- [13] R. Manthey and K. Mittmann, On a class of stochastic functionnal-differential equations arising in population dynamics. Stoc. Stoc. Rep. 64 (1998) 75–115. Zbl0907.60059
- [14] J.D. Murray, Mathematical Biology. Second Edition. Springer, Berlin 19 (1993). Zbl0779.92001MR1239892
- [15] B. Øksendal, G. Våge and H.Z. Zhao, Asymptotic properties of the solutions to stochastic KPP equations. Proc. Roy. Soc. Edinburgh 130A (2000) 1363–1381. Zbl0978.60070
- [16] B. Øksendal, G. Våge and H.Z. Zhao, Two properties of stochastic KPP equations: ergodicity and pathwise property. Nonlinearity 14 (2001) 639–662. Zbl0993.60064
- [17] M. Sanz-Solé and P.A. Vuillermot, Equivalence and Hölder-Sobolev regularity of solutions for a class of non-autonomous stochastic partial differential equations. Ann. Inst. H. Poincaré Probab. Statist. 39 (2003) 703–742. Zbl1026.60080