Equivalence and Hölder-Sobolev regularity of solutions for a class of non-autonomous stochastic partial differential equations

Marta Sanz-Solé; Pierre-A. Vuillermot

Annales de l'I.H.P. Probabilités et statistiques (2003)

  • Volume: 39, Issue: 4, page 703-742
  • ISSN: 0246-0203

How to cite

top

Sanz-Solé, Marta, and Vuillermot, Pierre-A.. "Equivalence and Hölder-Sobolev regularity of solutions for a class of non-autonomous stochastic partial differential equations." Annales de l'I.H.P. Probabilités et statistiques 39.4 (2003): 703-742. <http://eudml.org/doc/77778>.

@article{Sanz2003,
author = {Sanz-Solé, Marta, Vuillermot, Pierre-A.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stochastic partial differential equation; Hölder-Sobolev regularity},
language = {eng},
number = {4},
pages = {703-742},
publisher = {Elsevier},
title = {Equivalence and Hölder-Sobolev regularity of solutions for a class of non-autonomous stochastic partial differential equations},
url = {http://eudml.org/doc/77778},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Sanz-Solé, Marta
AU - Vuillermot, Pierre-A.
TI - Equivalence and Hölder-Sobolev regularity of solutions for a class of non-autonomous stochastic partial differential equations
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 4
SP - 703
EP - 742
LA - eng
KW - stochastic partial differential equation; Hölder-Sobolev regularity
UR - http://eudml.org/doc/77778
ER -

References

top
  1. [1] H. Amann, Linear and Quasilinear Parabolic Problems, I: Abstract Linear Theory, Monographs in Mathematics, 89, Birkhäuser, Basel, 1995. Zbl0819.35001MR1345385
  2. [2] J.M. Ball, Strongly continuous semigroups, weak solutions, and the variation of constants formula, Proc. Amer. Math. Soc.63 (1977) 370-373. Zbl0353.47017MR442748
  3. [3] V. Bally, A. Millet, M. Sanz-Solé, Approximation and support theorem in Hölder norm for parabolic stochastic partial differential equations, Ann. Probab.23 (1) (1995) 178-222. Zbl0835.60053MR1330767
  4. [4] B. Bergé, I.D. Chueshov, P.-A. Vuillermot, On the behavior of solutions to certain parabolic SPDE's driven by Wiener processes, Stochastic Process. Appl.92 (2001) 237-263. Zbl1047.60062MR1817588
  5. [5] S.R. Bernfeld, Y.Y. Hu, P.-A. Vuillermot, Large-time asymptotic equivalence for a class of non-autonomous semilinear parabolic equations, Bull. Sci. Math.122 (5) (1998) 337-368. Zbl0912.35027MR1639856
  6. [6] Z. Brzeźniak, S. Peszat, Space-time continuous solutions to SPDE's driven by a homogeneous Wiener process, Studia Math.137 (3) (1999) 261-299. Zbl0944.60075MR1736012
  7. [7] C. Cardon-Weber, A. Millet, On strongly Petrovskiĭ's parabolic SPDE's in arbitrary dimension, Preprint 685, Laboratoire de Probabilités et des Modèles Aléatoires, Université Paris 6, 2001. Zbl1049.60057MR1856154
  8. [8] A. Chojnowska-Michalik, Stochastic differential equations in Hilbert spaces, Banach Center Publications5 (1979) 53-73. Zbl0414.60064MR561468
  9. [9] I.D. Chueshov, P.-A. Vuillermot, Long-time behavior of solutions to a class of quasilinear parabolic equations with random coefficients, Ann. Inst. Henri Poincaré AN15 (2) (1998) 191-232. Zbl0930.60046MR1614575
  10. [10] I.D. Chueshov, P.-A. Vuillermot, Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Stratonovitch's case, Probab. Theory Related Fields112 (1998) 149-202. Zbl0914.35021MR1653833
  11. [11] I.D. Chueshov, P.-A. Vuillermot, Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Itô's case, Stochastic Anal. Appl.18 (4) (2000) 581-615. Zbl0968.60058MR1763942
  12. [12] R.C. Dalang, Extending martingale measure stochastic integral with applications to spatially homogeneous SPDE's, Electron. J. Probab.4 (1999) 1-29. Zbl0922.60056MR1684157
  13. [13] R.C. Dalang, N.E. Frangos, The stochastic wave equation in two spatial dimensions, Ann. Probab.26 (1) (1998) 187-212. Zbl0938.60046MR1617046
  14. [14] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992. Zbl0761.60052MR1207136
  15. [15] G. Da Prato, S. Kwapien, J. Zabczyk, Regularity of solutions of linear stochastic equations in Hilbert spaces, Stochastics23 (1987) 1-23. Zbl0634.60053MR920798
  16. [16] D.A. Dawson, L.G. Gorostiza, Solutions of evolution equations in Hilbert space, J. Differential Equations68 (1987) 299-319. Zbl0613.34048MR891330
  17. [17] S.D. Eidelman, S.D. Ivasis̆en, Investigation of the Green matrix for a homogeneous parabolic boundary value problem, Trans. Moscow Math. Soc.23 (1970) 179-242. Zbl0254.35067
  18. [18] S.D. Eidelman, N.V. Zhitarashu, Parabolic Boundary Value Problems, Operator Theory, Advances and Applications, 101, Birkhäuser, Basel, 1998. Zbl0893.35001MR1632789
  19. [19] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice Hall, Englewood Cliffs, NJ, 1964. Zbl0144.34903MR181836
  20. [20] T. Funaki, Regularity properties for stochastic partial differential equations of parabolic type, Osaka J. Math.28 (1991) 495-516. Zbl0770.60062MR1144470
  21. [21] I.M. Gelfand, N.Y. Vilenkin, Les Distributions, Collection Universitaire de Mathématiques, 4, Dunod, Paris, 1967. MR216288
  22. [22] I. Gyöngy, C. Rovira, On Lp-solutions of semilinear stochastic partial differential equations, Stochastic Process. Appl.90 (2000) 83-108. Zbl1046.60059MR1787126
  23. [23] P. Hess, Periodic-Parabolic Boundary-Value Problems and Positivity, Pitman Research Notes in Mathematics Series, 247, Langman, Harlow, 1991. Zbl0731.35050MR1100011
  24. [24] I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics, 113, Springer, New York, 1991. Zbl0734.60060MR1121940
  25. [25] A. Karczeswka, J. Zabczyk, Stochastic PDE's with function-valued solutions, in: Infinite-Dimensional Stochastic Analysis, Proceedings of the Colloquium of the Royal Netherlands Academy of Arts and Science, North-Holland, Amsterdam, 1999, pp. 197-216. Zbl0990.60065
  26. [26] T. Kato, Abstract evolution equations of parabolic type in Banach and Hilbert spaces, Nagoya Math. J.19 (1961) 93-125. Zbl0114.06102MR143065
  27. [27] T. Kato, Perturbation Theory for Linear Operators, Grundlehren der Mathematischen Wissenschaften, 132, Springer, New York, 1984. Zbl0531.47014
  28. [28] A.A. Kirillov, A.D. Gvishiani, Theorems and Problems in Functional Analysis, Problem Books in Mathematics, 9, Springer, New York, 1982. Zbl0486.46002MR671088
  29. [29] N.V. Krylov, An analytic approach to SPDE's, in: Stochastic Partial Differential Equations: Six Perspectives, AMS-Mathematical Surveys and Monographs, 64, American Mathematical Society, Providence, RI, 1999, pp. 185-242. Zbl0933.60073MR1661766
  30. [30] N.V. Krylov, B.L. Rozovskii, Stochastic evolution equations, J. Sov. Math.16 (1981) 1233-1277. Zbl0462.60060
  31. [31] O. Ladyzenskaya, N. Uraltceva, V.A. Solonnikov, Linear and Quasilinear Equations of Parabolic Type, AMS-Transl. of Math. Monographs, 23, American Mathematical Society, Providence, RI, 1968. Zbl0174.15403
  32. [32] J.A. León, Stochastic evolution equations with respect to semimartingales in Hilbert space, Stochastics27 (1989) 1-21. Zbl0675.60058MR1008224
  33. [33] O. Lévêque, Hyperbolic stochastic partial differential equations driven by boundary noises, Thèse 2452, EPFL, Lausanne, 2001. 
  34. [34] J.L. Lions, Équations Différentielles Opérationnelles et Problèmes aux Limites, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, 111, Springer, New York, 1961. Zbl0098.31101MR153974
  35. [35] S.V. Lototsky, Dirichlet problem for stochastic parabolic equations in smooth domains, Stochastics Stochastics Rep.68 (1999) 145-175. Zbl0944.60076MR1742721
  36. [36] S.V. Lototsky, Linear stochastic parabolic equations, degenerating on the boundary of a domain, Electron. J. Probab.6 (2001) 1-14. Zbl1008.60078MR1873301
  37. [37] D. Marquez-Carreras, M. Mellouk, M. Sarrà, On stochastic partial differential equations with spatially correlated noise: smoothness of the law, Stochastic Process. Appl.93 (2001) 269-284. Zbl1053.60070MR1828775
  38. [38] V. Mikhaïlov, Équations aux Dérivées Partielles, Mir, Moscow, 1980. Zbl0549.35001MR595502
  39. [39] R. Mikulevicius, On the Cauchy problem for parabolic SPDE's in Hölder classes, Ann. Probab.28 (1) (2000) 74-103. Zbl1044.60050MR1755998
  40. [40] A. Millet, M. Sanz-Solé, A stochastic wave equation in two space dimension: smoothness of the law, Ann. Probab.27 (2) (1999) 803-844. Zbl0944.60067MR1698971
  41. [41] A. Millet, M. Sanz-Solé, Approximation and support theorem for a wave equation in two space dimensions, Bernoulli6 (5) (2000) 887-915. Zbl0968.60059MR1791907
  42. [42] E. Pardoux, Équations aux dérivées partielles stochastiques nonlinéaires monotones: étude de solutions fortes de type Itô, Thèse 1556, Université Paris-Orsay, Paris, 1975. 
  43. [43] E. Pardoux, Stochastic partial differential equations, a review, Bull. Sci. Math.117 (1993) 29-47. Zbl0777.60054MR1205410
  44. [44] S. Peszat, J. Zabczyk, Nonlinear stochastic wave and heat equations, Probab. Theory Related Fields116 (2000) 421-443. Zbl0959.60044MR1749283
  45. [45] M. Sanz-Solé, P.-A. Vuillermot, Hölder–Sobolev regularity of solutions to a class of SPDE's driven by a spatially colored noise, C. R. Acad. Sci. Paris, Sér. I334 (2002) 869-874. Zbl1005.60075
  46. [46] M. Sanz-Solé, M. Sarrà, Hölder continuity for the stochastic heat equation with spatially correlated noise, in: Progress in Probability, Stochastic Analysis, Random Fields and Applications, Birkhäuser, Basel, 2002, to appear. MR1958822
  47. [47] V.A. Solonnikov, On boundary-value problems for linear parabolic systems of differential equations of general form, Proc. Steklov Inst. Math.83 (1965). Zbl0164.12502MR211083
  48. [48] H. Tanabe, Equations of Evolution, Monographs and Studies in Mathematics, 6, Pitman, London, 1979. Zbl0417.35003MR533824
  49. [49] P.-A. Vuillermot, Global exponential attractors for a class of nonautonomous reaction–diffusion equations on RN, Proc. Amer. Math. Soc.116 (3) (1992) 775-782. Zbl0802.35081
  50. [50] J.B. Walsh, An introduction to stochastic partial differential equations, in: École d'Été de Probabilités de Saint-Flour XIV, Lecture Notes in Mathematics, 1180, Springer, New York, 1986, pp. 265-439. Zbl0608.60060MR876085

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.