Integral representation and -convergence of variational integrals with -growth
Alessandra Coscia; Domenico Mucci
ESAIM: Control, Optimisation and Calculus of Variations (2002)
- Volume: 7, page 495-519
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topCoscia, Alessandra, and Mucci, Domenico. "Integral representation and $\sf \Gamma $-convergence of variational integrals with ${p(x)}$-growth." ESAIM: Control, Optimisation and Calculus of Variations 7 (2002): 495-519. <http://eudml.org/doc/245521>.
@article{Coscia2002,
abstract = {We study the integral representation properties of limits of sequences of integral functionals like $\int f(x,Du)\,\{\rm d\}x$ under nonstandard growth conditions of $(p,q)$-type: namely, we assume that\[ \vert z\vert ^\{p(x)\}\le f(x,z)\le L(1+\vert z\vert ^\{p(x)\})\,. \]Under weak assumptions on the continuous function $p(x)$, we prove $\Gamma $-convergence to integral functionals of the same type. We also analyse the case of integrands $f(x,u,Du)$ depending explicitly on $u$; finally we weaken the assumption allowing $p(x)$ to be discontinuous on nice sets.},
author = {Coscia, Alessandra, Mucci, Domenico},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {integral representation; $\Gamma $-convergence; nonstandard growth conditions; Gamma-convergence; integral functionals},
language = {eng},
pages = {495-519},
publisher = {EDP-Sciences},
title = {Integral representation and $\sf \Gamma $-convergence of variational integrals with $\{p(x)\}$-growth},
url = {http://eudml.org/doc/245521},
volume = {7},
year = {2002},
}
TY - JOUR
AU - Coscia, Alessandra
AU - Mucci, Domenico
TI - Integral representation and $\sf \Gamma $-convergence of variational integrals with ${p(x)}$-growth
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 7
SP - 495
EP - 519
AB - We study the integral representation properties of limits of sequences of integral functionals like $\int f(x,Du)\,{\rm d}x$ under nonstandard growth conditions of $(p,q)$-type: namely, we assume that\[ \vert z\vert ^{p(x)}\le f(x,z)\le L(1+\vert z\vert ^{p(x)})\,. \]Under weak assumptions on the continuous function $p(x)$, we prove $\Gamma $-convergence to integral functionals of the same type. We also analyse the case of integrands $f(x,u,Du)$ depending explicitly on $u$; finally we weaken the assumption allowing $p(x)$ to be discontinuous on nice sets.
LA - eng
KW - integral representation; $\Gamma $-convergence; nonstandard growth conditions; Gamma-convergence; integral functionals
UR - http://eudml.org/doc/245521
ER -
References
top- [1] E. Acerbi, G. Bouchitté and I. Fonseca, Relaxation of convex functionals: The gap phenomenon. Ann. Inst. H. Poincaré (2003). Zbl1025.49012
- [2] E. Acerbi and G. Mingione, Regularity results for a class of functionals with non standard growth. Arch. Rational Mech. Anal. 156 (2001) 121-140. Zbl0984.49020MR1814973
- [3] E. Acerbi and G. Mingione, Regularity results for a class of quasiconvex functionals with non standard growth. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 XXX (2001) 311-339. Zbl1027.49031MR1895714
- [4] R.A. Adams, Sobolev spaces. Academic Press, New York (1975). Zbl0314.46030MR450957
- [5] Yu.A. Alkutov, The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition. Differential Equations 33 (1998) 1653-1663. Zbl0949.35048MR1669915
- [6] G. Bouchitté, I. Fonseca and J. Malý, The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. Roy. Soc. Edinburgh Ser. A 128 (1988) 463-479. Zbl0907.49008MR1632814
- [7] G. Buttazzo, Semicontinuity, relaxation and integral representation in the calculus of variations. Longman, Harlow, Pitman Res. Notes in Math. 207 (1989). Zbl0669.49005MR1020296
- [8] G. Buttazzo and G. Dal Maso, A characterization of nonlinear functionals on Sobolev spaces which admit an integral representation with a Carathéodory integrand. J. Math. Pures Appl. 64 (1985) 337-361. Zbl0582.46038MR839727
- [9] G. Buttazzo and G. Dal Maso, Integral representation and relaxation of local functionals. Nonlinear Anal. 9 (1985) 515-532. Zbl0527.49008MR794824
- [10] A. Braides and A. Defranceschi, Homogenization of multiple integrals. Oxford University Press, Oxford, Oxford Lecture Ser. in Maths. and its Appl. 12 (1998). Zbl0911.49010MR1684713
- [11] L. Carbone and C. Sbordone, Some properties of -limits of integral functionals. Ann. Mat. Pura Appl. (iv) 122 (1979) 1-60. Zbl0474.49016MR565062
- [12] V. Chiadò Piat and A. Coscia, Hölder continuity of minimizers of functionals with variable growth exponent. Manuscripta Math. 93 (1997) 283-299. Zbl0878.49010MR1457729
- [13] A. Coscia and G. Mingione, Hölder continuity of the gradient of -harmonic mappings. C. R. Acad. Sci. Paris 328 (1999) 363-368. Zbl0920.49020MR1675954
- [14] G. Dal Maso, An introduction to -convergence. Birkäuser, Boston, Prog. Nonlinear Differential Equations Appl. 8 (1993). Zbl0816.49001MR1201152
- [15] G. Dal Maso and L. Modica, A general theory for variational functionals. Quaderno S.N.S. Pisa, Topics in Funct. Anal. (1982). Zbl0493.49005MR671757
- [16] E. De Giorgi, Sulla convergenza di alcune successioni di integrali di tipo dell’area. Rend. Mat. Univ. Roma 8 (1975) 277-294. Zbl0316.35036
- [17] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 58 (1975) 842-850. Zbl0339.49005MR448194
- [18] E. De Giorgi and G. Letta, Une notion générale de convergence faible pour des fonctions croissantes d’ensemble. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (1977) 61-99. Zbl0405.28008
- [19] I. Ekeland and R. Temam, Convex analysis and variational problems. North Holland, Amsterdam (1978). Zbl0322.90046MR569206
- [20] X. Fan and D. Zhao, A class of De Giorgi type and Hölder continuity. Nonlinear Anal. T.M.A. 36 (1999) 295-318. Zbl0927.46022MR1688232
- [21] N. Fusco, On the convergence of integral functionals depending on vector-valued functions. Ricerche Mat. 32 (1983) 321-339. Zbl0563.49007MR766684
- [22] P. Marcellini, Regularity and existence of solutions of elliptic equations with -growth conditions. J. Differential Equations 90 (1991) 1-30. Zbl0724.35043MR1094446
- [23] P. Marcellini, Regularity for some scalar variational problems under general growth conditions. J. Optim. Theory Appl. 90 (1996) 161-181. Zbl0901.49030MR1397651
- [24] C.B. Morrey, Quasi-convexity and semicontinuity of multiple integrals. Pacific J. Math. 2 (1952) 25-53. Zbl0046.10803MR54865
- [25] K.R. Rajagopal and M. Růžička, Mathematical modelling of electrorheological fluids. Cont. Mech. Therm. 13 (2001) 59-78. Zbl0971.76100
- [26] M. Růžička, Electrorheological fluids: Modeling and mathematical theory. Springer, Berlin, Lecture Notes in Math. 1748 (2000). Zbl0962.76001MR1810360
- [27] V.V. Zhikov, On the passage to the limit in nonlinear variational problems. Russian Acad. Sci. Sb. Math. 76 (1993) 427-459. Zbl0791.35036MR1187249
- [28] V.V. Zhikov, On Lavrentiev’s phenomenon. Russian J. Math. Phys. 3 (1995) 249-269. Zbl0910.49020
- [29] V.V. Zhikov, On some variational problems. Russian J. Math. Phys. 5 (1997) 105-116. Zbl0917.49006MR1486765
- [30] V.V. Zhikov, Meyers type estimates for solving the non linear Stokes system. Differential Equations 33 (1997) 107-114. Zbl0911.35089MR1607245
- [31] V.V. Zhikov, S.M. Kozlov and O.A. Oleinik, Homogenization of differential operators and integral functionals. Springer, Berlin (1994). Zbl0838.35001MR1329546
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.