Integral representation and Γ -convergence of variational integrals with p ( x ) -growth

Alessandra Coscia; Domenico Mucci

ESAIM: Control, Optimisation and Calculus of Variations (2002)

  • Volume: 7, page 495-519
  • ISSN: 1292-8119

Abstract

top
We study the integral representation properties of limits of sequences of integral functionals like f ( x , D u ) d x under nonstandard growth conditions of ( p , q ) -type: namely, we assume that | z | p ( x ) f ( x , z ) L ( 1 + | z | p ( x ) ) . Under weak assumptions on the continuous function p ( x ) , we prove Γ -convergence to integral functionals of the same type. We also analyse the case of integrands f ( x , u , D u ) depending explicitly on u ; finally we weaken the assumption allowing p ( x ) to be discontinuous on nice sets.

How to cite

top

Coscia, Alessandra, and Mucci, Domenico. "Integral representation and $\sf \Gamma $-convergence of variational integrals with ${p(x)}$-growth." ESAIM: Control, Optimisation and Calculus of Variations 7 (2002): 495-519. <http://eudml.org/doc/245521>.

@article{Coscia2002,
abstract = {We study the integral representation properties of limits of sequences of integral functionals like $\int f(x,Du)\,\{\rm d\}x$ under nonstandard growth conditions of $(p,q)$-type: namely, we assume that\[ \vert z\vert ^\{p(x)\}\le f(x,z)\le L(1+\vert z\vert ^\{p(x)\})\,. \]Under weak assumptions on the continuous function $p(x)$, we prove $\Gamma $-convergence to integral functionals of the same type. We also analyse the case of integrands $f(x,u,Du)$ depending explicitly on $u$; finally we weaken the assumption allowing $p(x)$ to be discontinuous on nice sets.},
author = {Coscia, Alessandra, Mucci, Domenico},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {integral representation; $\Gamma $-convergence; nonstandard growth conditions; Gamma-convergence; integral functionals},
language = {eng},
pages = {495-519},
publisher = {EDP-Sciences},
title = {Integral representation and $\sf \Gamma $-convergence of variational integrals with $\{p(x)\}$-growth},
url = {http://eudml.org/doc/245521},
volume = {7},
year = {2002},
}

TY - JOUR
AU - Coscia, Alessandra
AU - Mucci, Domenico
TI - Integral representation and $\sf \Gamma $-convergence of variational integrals with ${p(x)}$-growth
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 7
SP - 495
EP - 519
AB - We study the integral representation properties of limits of sequences of integral functionals like $\int f(x,Du)\,{\rm d}x$ under nonstandard growth conditions of $(p,q)$-type: namely, we assume that\[ \vert z\vert ^{p(x)}\le f(x,z)\le L(1+\vert z\vert ^{p(x)})\,. \]Under weak assumptions on the continuous function $p(x)$, we prove $\Gamma $-convergence to integral functionals of the same type. We also analyse the case of integrands $f(x,u,Du)$ depending explicitly on $u$; finally we weaken the assumption allowing $p(x)$ to be discontinuous on nice sets.
LA - eng
KW - integral representation; $\Gamma $-convergence; nonstandard growth conditions; Gamma-convergence; integral functionals
UR - http://eudml.org/doc/245521
ER -

References

top
  1. [1] E. Acerbi, G. Bouchitté and I. Fonseca, Relaxation of convex functionals: The gap phenomenon. Ann. Inst. H. Poincaré (2003). Zbl1025.49012
  2. [2] E. Acerbi and G. Mingione, Regularity results for a class of functionals with non standard growth. Arch. Rational Mech. Anal. 156 (2001) 121-140. Zbl0984.49020MR1814973
  3. [3] E. Acerbi and G. Mingione, Regularity results for a class of quasiconvex functionals with non standard growth. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 XXX (2001) 311-339. Zbl1027.49031MR1895714
  4. [4] R.A. Adams, Sobolev spaces. Academic Press, New York (1975). Zbl0314.46030MR450957
  5. [5] Yu.A. Alkutov, The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition. Differential Equations 33 (1998) 1653-1663. Zbl0949.35048MR1669915
  6. [6] G. Bouchitté, I. Fonseca and J. Malý, The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. Roy. Soc. Edinburgh Ser. A 128 (1988) 463-479. Zbl0907.49008MR1632814
  7. [7] G. Buttazzo, Semicontinuity, relaxation and integral representation in the calculus of variations. Longman, Harlow, Pitman Res. Notes in Math. 207 (1989). Zbl0669.49005MR1020296
  8. [8] G. Buttazzo and G. Dal Maso, A characterization of nonlinear functionals on Sobolev spaces which admit an integral representation with a Carathéodory integrand. J. Math. Pures Appl. 64 (1985) 337-361. Zbl0582.46038MR839727
  9. [9] G. Buttazzo and G. Dal Maso, Integral representation and relaxation of local functionals. Nonlinear Anal. 9 (1985) 515-532. Zbl0527.49008MR794824
  10. [10] A. Braides and A. Defranceschi, Homogenization of multiple integrals. Oxford University Press, Oxford, Oxford Lecture Ser. in Maths. and its Appl. 12 (1998). Zbl0911.49010MR1684713
  11. [11] L. Carbone and C. Sbordone, Some properties of Γ -limits of integral functionals. Ann. Mat. Pura Appl. (iv) 122 (1979) 1-60. Zbl0474.49016MR565062
  12. [12] V. Chiadò Piat and A. Coscia, Hölder continuity of minimizers of functionals with variable growth exponent. Manuscripta Math. 93 (1997) 283-299. Zbl0878.49010MR1457729
  13. [13] A. Coscia and G. Mingione, Hölder continuity of the gradient of p ( x ) -harmonic mappings. C. R. Acad. Sci. Paris 328 (1999) 363-368. Zbl0920.49020MR1675954
  14. [14] G. Dal Maso, An introduction to Γ -convergence. Birkäuser, Boston, Prog. Nonlinear Differential Equations Appl. 8 (1993). Zbl0816.49001MR1201152
  15. [15] G. Dal Maso and L. Modica, A general theory for variational functionals. Quaderno S.N.S. Pisa, Topics in Funct. Anal. (1982). Zbl0493.49005MR671757
  16. [16] E. De Giorgi, Sulla convergenza di alcune successioni di integrali di tipo dell’area. Rend. Mat. Univ. Roma 8 (1975) 277-294. Zbl0316.35036
  17. [17] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 58 (1975) 842-850. Zbl0339.49005MR448194
  18. [18] E. De Giorgi and G. Letta, Une notion générale de convergence faible pour des fonctions croissantes d’ensemble. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (1977) 61-99. Zbl0405.28008
  19. [19] I. Ekeland and R. Temam, Convex analysis and variational problems. North Holland, Amsterdam (1978). Zbl0322.90046MR569206
  20. [20] X. Fan and D. Zhao, A class of De Giorgi type and Hölder continuity. Nonlinear Anal. T.M.A. 36 (1999) 295-318. Zbl0927.46022MR1688232
  21. [21] N. Fusco, On the convergence of integral functionals depending on vector-valued functions. Ricerche Mat. 32 (1983) 321-339. Zbl0563.49007MR766684
  22. [22] P. Marcellini, Regularity and existence of solutions of elliptic equations with p , q -growth conditions. J. Differential Equations 90 (1991) 1-30. Zbl0724.35043MR1094446
  23. [23] P. Marcellini, Regularity for some scalar variational problems under general growth conditions. J. Optim. Theory Appl. 90 (1996) 161-181. Zbl0901.49030MR1397651
  24. [24] C.B. Morrey, Quasi-convexity and semicontinuity of multiple integrals. Pacific J. Math. 2 (1952) 25-53. Zbl0046.10803MR54865
  25. [25] K.R. Rajagopal and M. Růžička, Mathematical modelling of electrorheological fluids. Cont. Mech. Therm. 13 (2001) 59-78. Zbl0971.76100
  26. [26] M. Růžička, Electrorheological fluids: Modeling and mathematical theory. Springer, Berlin, Lecture Notes in Math. 1748 (2000). Zbl0962.76001MR1810360
  27. [27] V.V. Zhikov, On the passage to the limit in nonlinear variational problems. Russian Acad. Sci. Sb. Math. 76 (1993) 427-459. Zbl0791.35036MR1187249
  28. [28] V.V. Zhikov, On Lavrentiev’s phenomenon. Russian J. Math. Phys. 3 (1995) 249-269. Zbl0910.49020
  29. [29] V.V. Zhikov, On some variational problems. Russian J. Math. Phys. 5 (1997) 105-116. Zbl0917.49006MR1486765
  30. [30] V.V. Zhikov, Meyers type estimates for solving the non linear Stokes system. Differential Equations 33 (1997) 107-114. Zbl0911.35089MR1607245
  31. [31] V.V. Zhikov, S.M. Kozlov and O.A. Oleinik, Homogenization of differential operators and integral functionals. Springer, Berlin (1994). Zbl0838.35001MR1329546

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.