Regularity results for a class of quasiconvex functionals with nonstandard growth

Emilio Acerbi; Giuseppe Mingione

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2001)

  • Volume: 30, Issue: 2, page 311-339
  • ISSN: 0391-173X

How to cite

top

Acerbi, Emilio, and Mingione, Giuseppe. "Regularity results for a class of quasiconvex functionals with nonstandard growth." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 30.2 (2001): 311-339. <http://eudml.org/doc/84444>.

@article{Acerbi2001,
author = {Acerbi, Emilio, Mingione, Giuseppe},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {regularity results; nonstandard growth; quasiconvex functional},
language = {eng},
number = {2},
pages = {311-339},
publisher = {Scuola normale superiore},
title = {Regularity results for a class of quasiconvex functionals with nonstandard growth},
url = {http://eudml.org/doc/84444},
volume = {30},
year = {2001},
}

TY - JOUR
AU - Acerbi, Emilio
AU - Mingione, Giuseppe
TI - Regularity results for a class of quasiconvex functionals with nonstandard growth
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2001
PB - Scuola normale superiore
VL - 30
IS - 2
SP - 311
EP - 339
LA - eng
KW - regularity results; nonstandard growth; quasiconvex functional
UR - http://eudml.org/doc/84444
ER -

References

top
  1. [AF1] E. Acerbi - N. Fusco, Semicontinuity problems in the Calculus of Variations, Arch. Rational Mech. Anal.86 (1984), 125-145. Zbl0565.49010MR751305
  2. [AF2] E. Acerbi - N. Fusco, A regularity theorem for minimizers of quasiconvex integrals, Arch. Rational Mech. Anal.99 (1987), 261-281. Zbl0627.49007MR888453
  3. [AF3] E. Acerbi - N. Fusco, Partial regularity under anisotropic (p, q) growth conditions, J. Differential Equations107 (1994), 46-67. Zbl0807.49010MR1260848
  4. [AM1] E. Acerbi - G. Mingione, Regularity results for a class of functionals with nonstandard growth, Arch. Rational Mech. Anal.156 (2001), 121-140. Zbl0984.49020MR1814973
  5. [AM2] E. Acerbi - G. Mingione, Regularity results for electrorheological fluids: the stationary case, to appear. Zbl1017.76098MR1905047
  6. [A] Yu. A. Alkhutov, The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition, Differential Equations33 (1997), 1653-1663. Zbl0949.35048MR1669915
  7. [BF] M. Bildhauer - M. Fuch, Partial regularity for variational integrals with (s, μ, q)-growth, Calc. Var., to appear. Zbl1018.49026
  8. [CFM] M. Carozza - N. Fusco - G. Mingione, Partial regularity of minimizers of quasiconvex integrals with subquadratic growth, Ann. Mat. Pura Appl.175 (1998), 141-164. Zbl0960.49025MR1748219
  9. [CC] V. Chiadò Piat - A. Coscia, Hölder continuity of minimizers of functionals with variable growth exponent, Manuscripta Math.93 (1997), 283-299. Zbl0878.49010MR1457729
  10. [CM] A. Coscia - G. Mingione, Hölder continuity of the gradient of p(x)-harmonic mappings, C. R. Acad. Sci. Paris328 (1999), 363-368. Zbl0920.49020MR1675954
  11. [CFP] G. Cupini - N. Fusco - R. Petti, Hölder continuity of local minimizers, J. Math. Anal. Appl.235 (1999), 578-597. Zbl0949.49022MR1703712
  12. [Ek] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc.1 (1979), 443-474. Zbl0441.49011MR526967
  13. [ELM] L. Esposito - F. Leonetti - G. Mingione, Higher integrability for minimizers of integralfunctionals with (p, q) growth, J. Differential Equations157 (1999), 414-438. Zbl0939.49021MR1713266
  14. [EM] L. Esposito - G. Mingione, Partial regularity for minimizers of convex integrals with L log L-growth, NoDEA Nonlinear Differential Equations Appl.7 (1) (2000), 107-125 Zbl0954.49026MR1746116
  15. [E] L. Evans, Quasiconvexity and partial regularity in the Calculus of Variations, Arch. Rational Mech. Anal.95 (1986), 227-252. Zbl0627.49006MR853966
  16. [EG] L. Evans - R. Gariepy, Blow-up, compactness and partial regularity in the Calculus of Variations, Indiana Univ. Math. J.36 (1987), 361-371. Zbl0626.49007MR891780
  17. [FZ] Fan Xiangling - Zhao Dun, A class of De Giorgi type and Hölder continuity, Nonlinear Anal. 36 (A) (1999), 295-318. Zbl0927.46022MR1688232
  18. [FS] M. Fuchs - G. Seregin, A regularity theory for variational integrals with L log L-growth, Calc. Var. Partial Differential Equations6 (1998), 171-187. Zbl0929.49022MR1606481
  19. [FH] N. Fusco - J. Hutchinson, C1,α partial regularity of functions minimizing quasiconvex integrals, Manuscripta Math. 54 (1985), 121-143. Zbl0587.49005
  20. [Gia] M. Giaquinta, "Multiple integrals in Calculus of Variations and nonlinear elliptic sistems", Annals of Math. Studies105, Princeton Univ. Press, 1983. Zbl0516.49003MR717034
  21. [Giu] E. Giusti, "Metodi Diretti nel Calcolo delle Variazioni ", UMI, Bologna, 1994. Zbl0942.49002MR1707291
  22. [I] T. Iwaniec, The Gehring lemma, In: P.L. Duren and oth. (eds.) "Quasiconformal mappings and analysis: papers honoring F.W. Gehring", Ann. Arbour, MI, Springer Verlag, 1995, 181-204. Zbl0888.30017MR1488451
  23. [M1] P. Marcellini, Regularity of minimizers of integrals of the Calculus of Variations with non standard growth conditions, Arch. Rational Mech. Anal.105 (1989), 267-284. Zbl0667.49032MR969900
  24. [M2] P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differential Equations90 (1991), 1-30. Zbl0724.35043MR1094446
  25. [M3] P. Marcellini, Regularity for elliptic equations with general growth conditions, J. Differential Equations105 (1993), 296-333. Zbl0812.35042MR1240398
  26. [M4] P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), 1-25. Zbl0922.35031MR1401415
  27. [M5] P. Marcellini, Regularity for some scalar variational problems under general growth conditions, J. Optim. Theory Appl. 90 (1996), 161-181. Zbl0901.49030MR1397651
  28. [RR] K.R. Rajagopal - M. Růžička, Mathematical modelling of electrorheological fluids, Cont. Mech. Therm.13 (1) (2001), 59-78. Zbl0971.76100
  29. [R1] M Růžička, Flow of shear dependent electrorheological, fluids, C. R. Acad. Sci. Paris329 (1999), 393-398. Zbl0954.76097MR1710119
  30. [R2] M Růžička, Electrorheological fluids: modeling and mathematical theory, Springer, Lecture Notes in Math. 1748 (2000). Zbl0962.76001MR1810360
  31. [Z1] V.V. Zhikov, On Lavrentiev's phenomenon, Russian J. Math. Physics3 (1995), 249-269. Zbl0910.49020MR1350506
  32. [Z2] V.V. Zhikov, On some variational problems, Russian J. Math. Physics5 (1997), 105-116. Zbl0917.49006MR1486765
  33. [Z3] V.V. Zhikov, Meyers-type estimates for solving the non linear Stokes system, Differential Equations33 (1) (1997), 107-114. Zbl0911.35089MR1607245

Citations in EuDML Documents

top
  1. Alessandra Coscia, Domenico Mucci, Integral representation and Γ -convergence of variational integrals with p ( x ) -growth
  2. Jens Habermann, Full Regularity for Convex Integral Functionals with p ( x ) Growth in Low Dimensions
  3. Alessandra Coscia, Domenico Mucci, Integral representation and Γ-convergence of variational integrals with -growth
  4. Sabine Schemm, Partial regularity of minimizers of higher order integrals with (, )-growth
  5. Michela Eleuteri, Hölder continuity results for a class of functionals with non-standard growth
  6. Sabine Schemm, Partial regularity of minimizers of higher order integrals with (, )-growth
  7. Giuseppe Mingione, Regularity of minima: an invitation to the Dark Side of the Calculus of Variations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.