Transport of pollutant in shallow water : a two time steps kinetic method
Emmanuel Audusse; Marie-Odile Bristeau
- Volume: 37, Issue: 2, page 389-416
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] E. Audusse, M.O. Bristeau and B. Perthame, Kinetic schemes for Saint-Venant equations with source terms on unstructured grids. INRIA Report, RR-3989 (2000), http://www.inria.fr/RRRT/RR-3989.html.
- [2] A. Bermudez and M.E. Vasquez, Upwind methods for hyperbolic conservation laws with source terms. Comput. & Fluids 23 (1994) 1049–1071. Zbl0816.76052
- [3] M.O. Bristeau and B. Coussin, Boundary conditions for the shallow water equations solved by kinetic schemes. INRIA Report, RR-4282 (2001), http://www.inria.fr/RRRT/RR-4282.html.
- [4] M.O. Bristeau and B. Perthame, Transport of pollutant in shallow water using kinetic schemes. CEMRACS, ESAIM Proc. 10 (1999) 9–21, http://www.emath.fr/Maths/Proc/Vol.10. Zbl1151.76593
- [5] R. Eymard, T. Gallouet and R. Herbin, Finite volume methods, Handbook of numerical analysis, Vol. VIII, P.G. Ciarlet and J.L. Lions Eds., Amsterdam, North-Holland (2000). Zbl0981.65095MR1804748
- [6] T. Gallouet, J.M. Hérard and N. Seguin, Some approximate Godunov schemes to compute shallow water equations with topography. Comput. & Fluids 32 (2003) 479–513. Zbl1084.76540
- [7] J.F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water; Numerical validation. Discrete Contin. Dynam. Systems 1 (2001) 89–102. Zbl0997.76023
- [8] E. Godlewski and P.A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. Springer-Verlag, New York, Appl. Math. Sci. 118 (1996). Zbl0860.65075MR1410987
- [9] L. Gosse and A.Y. LeRoux, A well-balanced scheme designed for inhomogeneous scalar conservation laws. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 543–546. Zbl0858.65091
- [10] J.M. Hervouet, Hydrodynamique des écoulements à surface libre, apport de la méthode des éléments finis. EDF (2001).
- [11] S. Jin, A steady state capturing method for hyperbolic system with geometrical source terms. ESAIM: M2AN 35 (2001) 631–646. Zbl1001.35083
- [12] R.J. LeVêque, Numerical Methods for Conservation Laws. Second edition, ETH Zurich, Birkhauser, Lectures in Mathematics (1992). Zbl0723.65067MR1153252
- [13] R.J. LeVêque, Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146 (1998) 346–365. Zbl0931.76059
- [14] L. Martin, Fonctionnement écologique de la Seine à l’aval de la station d’épuration d’Achères: données expérimentales et modélisation bidimensionnelle. Ph.D. Thesis, École des Mines de Paris, France (2001).
- [15] B. Perthame, Kinetic formulations of conservation laws. Oxford University Press (2002). Zbl1030.35002MR2064166
- [16] B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38 (2001) 201–231. Zbl1008.65066
- [17] P.L. Roe, Upwind differencing schemes for hyperbolic conservation laws with source terms, in Nonlinear Hyperbolic Problems, C. Carasso, P.A. Raviart and D. Serre Eds., Berlin, Springer-Verlag, Lecture Notes in Math. 1270 (1987) 41–51. Zbl0626.65086
- [18] A.J.C. de Saint-Venant, Théorie du mouvement non permanent des eaux, avec application aux crues de rivières et à l’introduction des marées dans leur lit. C. R. Acad. Sci. Paris Sér. I Math. 73 (1871) 147–154. Zbl03.0482.04JFM03.0482.04
- [19] J.J. Stoker, The formation of breakers and bores. Comput. Appl. Math. 1 (1948). Zbl0041.54602MR24307