Lipschitz modulus in convex semi-infinite optimization via d.c. functions
María J. Cánovas; Abderrahim Hantoute; Marco A. López; Juan Parra
ESAIM: Control, Optimisation and Calculus of Variations (2009)
- Volume: 15, Issue: 4, page 763-781
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J.V. Burke and M.C. Ferris, Weak sharp minima in mathematical programming. SIAM J. Contr. Opt. 31 (1993) 1340–1359. Zbl0791.90040MR1234006
- [2] M.J. Cánovas, F.J. Gómez-Senent and J. Parra, On the Lipschitz modulus of the argmin mapping in linear semi-infinite optimization. Set-Valued Anal. (2007) Online First. Zbl1156.90448MR2465504
- [3] M.J. Cánovas, D. Klatte, M.A. López and J. Parra, Metric regularity in convex semi-infinite optimization under canonical perturbations. SIAM J. Optim. 18 (2007) 717–732. Zbl1211.90256MR2345965
- [4] M.J. Cánovas, A. Hantoute, M.A. López and J. Parra, Lipschitz behavior of convex semi-infinite optimization problems: A variational approach. J. Global Optim. 41 (2008) 1–13. Zbl1190.90247MR2386592
- [5] M.J. Cánovas, A. Hantoute, M.A. López and J. Parra, Stability of indices in the KKT conditions and metric regularity in convex semi-infinite optimization. J. Optim. Theory Appl. (2008) Online First. Zbl1190.90246MR2453333
- [6] M.J. Cánovas, A. Hantoute, M.A. López and J. Parra, Lipschitz modulus of the optimal set mapping in convex semi-infinite optimization via minimal subproblems. Pacific J. Optim. (to appear). Zbl1162.49024
- [7] E. De Giorgi, A. Marino and M. Tosques, Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti Acad. Nat. Lincei, Rend, Cl. Sci. Fiz. Mat. Natur. 68 (1980) 180–187. Zbl0465.47041MR636814
- [8] V.F. Demyanov and A.M. Rubinov, Quasidifferentiable functionals. Dokl. Akad. Nauk SSSR 250 (1980) 21–25 (in Russian). Zbl0456.49016MR556111
- [9] V.F. Demyanov and A.M. Rubinov, Constructive nonsmooth analysis, Approximation & Optimization 7. Peter Lang, Frankfurt am Main (1995). Zbl0887.49014MR1325923
- [10] A.V. Fiacco and G.P. McCormick, Nonlinear programming. Wiley, New York (1968). Zbl0193.18805MR243831
- [11] M.A. Goberna and M.A. López, Linear Semi-Infinite Optimization. John Wiley & Sons, Chichester, UK (1998). Zbl0909.90257MR1628195
- [12] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms, I. Fundamentals, Grundlehren der Mathematischen Wissenschaften 305. Springer-Verlag, Berlin (1993). Zbl0795.49001MR1261420
- [13] A.D. Ioffe, Metric regularity and subdifferential calculus. Uspekhi Mat. Nauk 55 (2000) 103–162; English translation in Math. Surveys 55 (2000) 501–558. Zbl0979.49017MR1777352
- [14] A.D. Ioffe, On rubustness of the regularity property of maps. Control Cybern. 32 (2003) 543–554. Zbl1127.49023
- [15] D. Klatte and B. Kummer, Nonsmooth Equations in Optimization. Regularity, Calculus, Methods and Applications. Kluwer Academic Publ., Dordrecht (2002). Zbl1173.49300MR1909427
- [16] D. Klatte and B. Kummer, Strong Lipschitz stability of stationary solutions for nonlinear programs and variational inequalities. SIAM J. Optim. 16 (2005) 96–119. Zbl1097.90058MR2177771
- [17] D. Klatte and G. Thiere, A note of Lipschitz constants for solutions of linear inequalities and equations. Linear Algebra Appl. 244 (1996) 365–374. Zbl0860.15015MR1403290
- [18] P.-J. Laurent, Approximation et Optimisation. Hermann, Paris (1972). Zbl0238.90058MR467080
- [19] W. Li, The sharp Lipschitz constants for feasible and optimal solutions of a perturbed linear program. Linear Algebra Appl. 187 (1993) 15–40. Zbl0809.65057MR1221694
- [20] B.S. Mordukhovich, Variational Analysis and Generalized Differentiation I. Springer-Verlag, Berlin (2006). Zbl1100.49002MR2191744
- [21] G. Nürnberger, Unicity in semi-infinite optimization, in Parametric Optimization and Approximation, B. Brosowski, F. Deutsch Eds., Birkhäuser, Basel (1984) 231–247. Zbl0586.90065MR882207
- [22] S.M. Robinson, Bounds for error in the solution set of a perturbed linear program. Linear Algebra Appl. 6 (1973) 69–81. Zbl0283.90028MR317760
- [23] R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton, USA (1970). Zbl0193.18401MR274683
- [24] R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Springer-Verlag, Berlin (1997). Zbl0888.49001MR1491362
- [25] M. Studniarski and D.E. Ward, Weak sharp minima: Characterizations and sufficient conditions. SIAM J. Contr. Opt. 38 (1999) 219–236. Zbl0946.49011MR1740599
- [26] M. Valadier, Sous-différentiels d’une borne supérieure et d’une somme continue de fonctions convexes. C. R. Acad. Sci. Paris 268 (1969) 39–42. Zbl0164.43302MR241975