Lipschitz modulus in convex semi-infinite optimization via d.c. functions
María J. Cánovas; Abderrahim Hantoute; Marco A. López; Juan Parra
ESAIM: Control, Optimisation and Calculus of Variations (2009)
- Volume: 15, Issue: 4, page 763-781
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topCánovas, María J., et al. "Lipschitz modulus in convex semi-infinite optimization via d.c. functions." ESAIM: Control, Optimisation and Calculus of Variations 15.4 (2009): 763-781. <http://eudml.org/doc/245593>.
@article{Cánovas2009,
abstract = {We are concerned with the Lipschitz modulus of the optimal set mapping associated with canonically perturbed convex semi-infinite optimization problems. Specifically, the paper provides a lower and an upper bound for this modulus, both of them given exclusively in terms of the problem’s data. Moreover, the upper bound is shown to be the exact modulus when the number of constraints is finite. In the particular case of linear problems the upper bound (or exact modulus) adopts a notably simplified expression. Our approach is based on variational techniques applied to certain difference of convex functions related to the model. Some results of [M.J. Cánovas et al., J. Optim. Theory Appl. (2008) Online First] (which go back to [M.J. Cánovas, J. Global Optim. 41 (2008) 1–13] and [Ioffe, Math. Surveys 55 (2000) 501–558; Control Cybern. 32 (2003) 543–554]) constitute the starting point of the present work.},
author = {Cánovas, María J., Hantoute, Abderrahim, López, Marco A., Parra, Juan},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {convex semi-infinite programming; modulus of metric regularity; d.c. functions},
language = {eng},
number = {4},
pages = {763-781},
publisher = {EDP-Sciences},
title = {Lipschitz modulus in convex semi-infinite optimization via d.c. functions},
url = {http://eudml.org/doc/245593},
volume = {15},
year = {2009},
}
TY - JOUR
AU - Cánovas, María J.
AU - Hantoute, Abderrahim
AU - López, Marco A.
AU - Parra, Juan
TI - Lipschitz modulus in convex semi-infinite optimization via d.c. functions
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2009
PB - EDP-Sciences
VL - 15
IS - 4
SP - 763
EP - 781
AB - We are concerned with the Lipschitz modulus of the optimal set mapping associated with canonically perturbed convex semi-infinite optimization problems. Specifically, the paper provides a lower and an upper bound for this modulus, both of them given exclusively in terms of the problem’s data. Moreover, the upper bound is shown to be the exact modulus when the number of constraints is finite. In the particular case of linear problems the upper bound (or exact modulus) adopts a notably simplified expression. Our approach is based on variational techniques applied to certain difference of convex functions related to the model. Some results of [M.J. Cánovas et al., J. Optim. Theory Appl. (2008) Online First] (which go back to [M.J. Cánovas, J. Global Optim. 41 (2008) 1–13] and [Ioffe, Math. Surveys 55 (2000) 501–558; Control Cybern. 32 (2003) 543–554]) constitute the starting point of the present work.
LA - eng
KW - convex semi-infinite programming; modulus of metric regularity; d.c. functions
UR - http://eudml.org/doc/245593
ER -
References
top- [1] J.V. Burke and M.C. Ferris, Weak sharp minima in mathematical programming. SIAM J. Contr. Opt. 31 (1993) 1340–1359. Zbl0791.90040MR1234006
- [2] M.J. Cánovas, F.J. Gómez-Senent and J. Parra, On the Lipschitz modulus of the argmin mapping in linear semi-infinite optimization. Set-Valued Anal. (2007) Online First. Zbl1156.90448MR2465504
- [3] M.J. Cánovas, D. Klatte, M.A. López and J. Parra, Metric regularity in convex semi-infinite optimization under canonical perturbations. SIAM J. Optim. 18 (2007) 717–732. Zbl1211.90256MR2345965
- [4] M.J. Cánovas, A. Hantoute, M.A. López and J. Parra, Lipschitz behavior of convex semi-infinite optimization problems: A variational approach. J. Global Optim. 41 (2008) 1–13. Zbl1190.90247MR2386592
- [5] M.J. Cánovas, A. Hantoute, M.A. López and J. Parra, Stability of indices in the KKT conditions and metric regularity in convex semi-infinite optimization. J. Optim. Theory Appl. (2008) Online First. Zbl1190.90246MR2453333
- [6] M.J. Cánovas, A. Hantoute, M.A. López and J. Parra, Lipschitz modulus of the optimal set mapping in convex semi-infinite optimization via minimal subproblems. Pacific J. Optim. (to appear). Zbl1162.49024
- [7] E. De Giorgi, A. Marino and M. Tosques, Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti Acad. Nat. Lincei, Rend, Cl. Sci. Fiz. Mat. Natur. 68 (1980) 180–187. Zbl0465.47041MR636814
- [8] V.F. Demyanov and A.M. Rubinov, Quasidifferentiable functionals. Dokl. Akad. Nauk SSSR 250 (1980) 21–25 (in Russian). Zbl0456.49016MR556111
- [9] V.F. Demyanov and A.M. Rubinov, Constructive nonsmooth analysis, Approximation & Optimization 7. Peter Lang, Frankfurt am Main (1995). Zbl0887.49014MR1325923
- [10] A.V. Fiacco and G.P. McCormick, Nonlinear programming. Wiley, New York (1968). Zbl0193.18805MR243831
- [11] M.A. Goberna and M.A. López, Linear Semi-Infinite Optimization. John Wiley & Sons, Chichester, UK (1998). Zbl0909.90257MR1628195
- [12] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms, I. Fundamentals, Grundlehren der Mathematischen Wissenschaften 305. Springer-Verlag, Berlin (1993). Zbl0795.49001MR1261420
- [13] A.D. Ioffe, Metric regularity and subdifferential calculus. Uspekhi Mat. Nauk 55 (2000) 103–162; English translation in Math. Surveys 55 (2000) 501–558. Zbl0979.49017MR1777352
- [14] A.D. Ioffe, On rubustness of the regularity property of maps. Control Cybern. 32 (2003) 543–554. Zbl1127.49023
- [15] D. Klatte and B. Kummer, Nonsmooth Equations in Optimization. Regularity, Calculus, Methods and Applications. Kluwer Academic Publ., Dordrecht (2002). Zbl1173.49300MR1909427
- [16] D. Klatte and B. Kummer, Strong Lipschitz stability of stationary solutions for nonlinear programs and variational inequalities. SIAM J. Optim. 16 (2005) 96–119. Zbl1097.90058MR2177771
- [17] D. Klatte and G. Thiere, A note of Lipschitz constants for solutions of linear inequalities and equations. Linear Algebra Appl. 244 (1996) 365–374. Zbl0860.15015MR1403290
- [18] P.-J. Laurent, Approximation et Optimisation. Hermann, Paris (1972). Zbl0238.90058MR467080
- [19] W. Li, The sharp Lipschitz constants for feasible and optimal solutions of a perturbed linear program. Linear Algebra Appl. 187 (1993) 15–40. Zbl0809.65057MR1221694
- [20] B.S. Mordukhovich, Variational Analysis and Generalized Differentiation I. Springer-Verlag, Berlin (2006). Zbl1100.49002MR2191744
- [21] G. Nürnberger, Unicity in semi-infinite optimization, in Parametric Optimization and Approximation, B. Brosowski, F. Deutsch Eds., Birkhäuser, Basel (1984) 231–247. Zbl0586.90065MR882207
- [22] S.M. Robinson, Bounds for error in the solution set of a perturbed linear program. Linear Algebra Appl. 6 (1973) 69–81. Zbl0283.90028MR317760
- [23] R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton, USA (1970). Zbl0193.18401MR274683
- [24] R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Springer-Verlag, Berlin (1997). Zbl0888.49001MR1491362
- [25] M. Studniarski and D.E. Ward, Weak sharp minima: Characterizations and sufficient conditions. SIAM J. Contr. Opt. 38 (1999) 219–236. Zbl0946.49011MR1740599
- [26] M. Valadier, Sous-différentiels d’une borne supérieure et d’une somme continue de fonctions convexes. C. R. Acad. Sci. Paris 268 (1969) 39–42. Zbl0164.43302MR241975
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.