On multiplicatively dependent linear numeration systems, and periodic points
- [1] Université Paris 7 LIAFA, UMR 7089 CNRS 2 place Jussieu 75251 Paris Cedex 05 (France) and Université Paris 8
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2002)
- Volume: 36, Issue: 3, page 293-314
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topFrougny, Christiane. "On multiplicatively dependent linear numeration systems, and periodic points." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 36.3 (2002): 293-314. <http://eudml.org/doc/245625>.
@article{Frougny2002,
abstract = {Two linear numeration systems, with characteristic polynomial equal to the minimal polynomial of two Pisot numbers $\beta $ and $\gamma $ respectively, such that $\beta $ and $\gamma $ are multiplicatively dependent, are considered. It is shown that the conversion between one system and the other one is computable by a finite automaton. We also define a sequence of integers which is equal to the number of periodic points of a sofic dynamical system associated with some Parry number.},
affiliation = {Université Paris 7 LIAFA, UMR 7089 CNRS 2 place Jussieu 75251 Paris Cedex 05 (France) and Université Paris 8},
author = {Frougny, Christiane},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {numeration system; Pisot number; finite automaton; periodic point; Pisot numerations; finite automata; multiplicatively dependent numeration bases; Parry numbers},
language = {eng},
number = {3},
pages = {293-314},
publisher = {EDP-Sciences},
title = {On multiplicatively dependent linear numeration systems, and periodic points},
url = {http://eudml.org/doc/245625},
volume = {36},
year = {2002},
}
TY - JOUR
AU - Frougny, Christiane
TI - On multiplicatively dependent linear numeration systems, and periodic points
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2002
PB - EDP-Sciences
VL - 36
IS - 3
SP - 293
EP - 314
AB - Two linear numeration systems, with characteristic polynomial equal to the minimal polynomial of two Pisot numbers $\beta $ and $\gamma $ respectively, such that $\beta $ and $\gamma $ are multiplicatively dependent, are considered. It is shown that the conversion between one system and the other one is computable by a finite automaton. We also define a sequence of integers which is equal to the number of periodic points of a sofic dynamical system associated with some Parry number.
LA - eng
KW - numeration system; Pisot number; finite automaton; periodic point; Pisot numerations; finite automata; multiplicatively dependent numeration bases; Parry numbers
UR - http://eudml.org/doc/245625
ER -
References
top- [1] M.-J. Bertin, A. Decomps–Guilloux, M. Grandet–Hugot, M. Pathiaux–Delefosse and J.-P. Schreiber, Pisot and Salem numbers. Birkhäuser (1992). Zbl0772.11041
- [2] A. Bertrand, Développements en base de Pisot et répartition modulo 1. C. R. Acad. Sci. Paris 285 (1977) 419-421. Zbl0362.10040MR447134
- [3] A. Bertrand–Mathis, Comment écrire les nombres entiers dans une base qui n’est pas entière. Acta Math. Acad. Sci. Hungar. 54 (1989) 237-241. Zbl0695.10005
- [4] A. Bès, An extension of the Cobham–Semënov Theorem. J. Symb. Logic 65 (2000) 201-211. Zbl0958.03025
- [5] J.R. Büchi, Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math. 6 (1960) 66-92. Zbl0103.24705MR125010
- [6] V. Bruyère and G. Hansel, Bertrand numeration systems and recognizability. Theoret. Comput. Sci. 181 (1997) 17-43. Zbl0957.11015MR1463527
- [7] A. Cobham, On the base-dependence of sets of numbers recognizable by finite automata. Math. Systems Theory 3 (1969) 186-192. Zbl0179.02501MR250789
- [8] F. Durand, A generalization of Cobham’s Theorem. Theory Comput. Systems 31 (1998) 169-185. Zbl0895.68081
- [9] S. Eilenberg, Automata, Languages and Machines, Vol. A. Academic Press (1974). Zbl0317.94045MR530382
- [10] S. Fabre, Une généralisation du théorème de Cobham. Acta Arithm. 67 (1994) 197-208. Zbl0814.11015MR1292734
- [11] A.S. Fraenkel, Systems of numeration. Amer. Math. Monthly 92 (1985) 105-114. Zbl0568.10005MR777556
- [12] Ch. Frougny, Representation of numbers and finite automata. Math. Systems Theory 25 (1992) 37-60. Zbl0776.11005MR1139094
- [13] Ch. Frougny, Conversion between two multiplicatively dependent linear numeration systems, in Proc. of LATIN 02. Springer-Verlag, Lectures Notes in Comput. Sci. 2286 (2002) 64-75. Zbl1152.11303MR1966116
- [14] Ch. Frougny and J. Sakarovitch, Automatic conversion from Fibonacci representation to representation in base , and a generalization. Internat. J. Algebra Comput. 9 (1999) 351-384. Zbl1040.68061MR1723473
- [15] Ch. Frougny and B. Solomyak, On Representation of Integers in Linear Numeration Systems, in Ergodic theory of -Actions, edited by M. Pollicott and K. Schmidt. Cambridge University Press, London Math. Soc. Lecture Note Ser. 228 (1996) 345-368. Zbl0856.11007MR1411227
- [16] Ch. Frougny and B. Solomyak, On the context-freeness of the -expansions of the integers. Internat. J. Algebra Comput. 9 (1999) 347-350. Zbl1041.11008MR1723472
- [17] G. Hansel, Systèmes de numération indépendants et syndéticité. Theoret. Comput. Sci. 204 (1998) 119-130. Zbl0952.68073MR1637516
- [18] M. Hollander, Greedy numeration systems and regularity. Theory Comput. Systems 31 (1998) 111-133. Zbl0895.68088MR1491655
- [19] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics. Cambridge University Press (1995). Zbl1106.37301MR1369092
- [20] M. Lothaire, Algebraic Combinatorics on Words. Cambridge University Press (2002). Zbl1001.68093MR1905123
- [21] W. Parry, On the -expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416. Zbl0099.28103MR142719
- [22] Y. Puri and T. Ward, A dynamical property unique to the Lucas sequence. Fibonacci Quartely 39 (2001) 398-402. Zbl1018.37009MR1866354
- [23] Y. Puri and T. Ward, Arithmetic and growth of periodic orbits. J. Integer Sequences 4 (2001), Article 01.2.1. Zbl1004.11013MR1873399
- [24] A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493. Zbl0079.08901MR97374
- [25] A.L. Semënov, The Presburger nature of predicates that are regular in two number systems. Siberian Math. J. 18 (1977) 289-299. Zbl0411.03054MR450050
- [26] J. Shallit, Numeration systems, linear recurrences, and regular sets. Inform. Comput. 113 (1994) 331-347. Zbl0810.11006MR1285236
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.