# Approximation of maximal Cheeger sets by projection

Guillaume Carlier; Myriam Comte; Gabriel Peyré

- Volume: 43, Issue: 1, page 139-150
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topCarlier, Guillaume, Comte, Myriam, and Peyré, Gabriel. "Approximation of maximal Cheeger sets by projection." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 43.1 (2009): 139-150. <http://eudml.org/doc/245646>.

@article{Carlier2009,

abstract = {This article deals with the numerical computation of the Cheeger constant and the approximation of the maximal Cheeger set of a given subset of $\mathbb \{R\}^d$. This problem is motivated by landslide modelling as well as by the continuous maximal flow problem. Using the fact that the maximal Cheeger set can be approximated by solving a rather simple projection problem, we propose a numerical strategy to compute maximal Cheeger sets and Cheeger constants.},

author = {Carlier, Guillaume, Comte, Myriam, Peyré, Gabriel},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},

keywords = {Cheeger sets; Cheeger constant; total variation minimization; projections; Cheeger set; Cheeger constants; landslide modeling; continuous maximal flow problem},

language = {eng},

number = {1},

pages = {139-150},

publisher = {EDP-Sciences},

title = {Approximation of maximal Cheeger sets by projection},

url = {http://eudml.org/doc/245646},

volume = {43},

year = {2009},

}

TY - JOUR

AU - Carlier, Guillaume

AU - Comte, Myriam

AU - Peyré, Gabriel

TI - Approximation of maximal Cheeger sets by projection

JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

PY - 2009

PB - EDP-Sciences

VL - 43

IS - 1

SP - 139

EP - 150

AB - This article deals with the numerical computation of the Cheeger constant and the approximation of the maximal Cheeger set of a given subset of $\mathbb {R}^d$. This problem is motivated by landslide modelling as well as by the continuous maximal flow problem. Using the fact that the maximal Cheeger set can be approximated by solving a rather simple projection problem, we propose a numerical strategy to compute maximal Cheeger sets and Cheeger constants.

LA - eng

KW - Cheeger sets; Cheeger constant; total variation minimization; projections; Cheeger set; Cheeger constants; landslide modeling; continuous maximal flow problem

UR - http://eudml.org/doc/245646

ER -

## References

top- [1] F. Alter and V. Caselles, Uniqueness of the Cheeger set of a convex body. Preprint (2007) available at http://cvgmt.sns.it. Zbl1167.52005MR2358032
- [2] F. Alter, V. Caselles and A. Chambolle, Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow. Interfaces Free Bound. 7 (2005) 29–53. Zbl1084.49003MR2126142
- [3] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs. Oxford University Press, New York (2000). Zbl0957.49001MR1857292
- [4] B. Appleton and H. Talbot, Globally minimal surfaces by continuous maximal flows. IEEE Trans. Pattern Anal. Mach. Intell. 28 (2006) 106–118.
- [5] G. Bellettini, V. Caselles, A. Chambolle and M. Novaga, Crystalline mean curvature flow of convex sets. Arch. Ration. Mech. Anal. 179 (2006) 109–152. Zbl1148.53049MR2208291
- [6] G. Buttazzo, G. Carlier and M. Comte, On the selection of maximal Cheeger sets. Differential Integral Equations 20 (2007) 991–1004. Zbl1212.49019MR2349376
- [7] G. Carlier and M. Comte, On a weighted total variation minimization problem. J. Funct. Anal. 250 (2007) 214–226. Zbl1120.49011MR2345913
- [8] V. Caselles, A. Chambolle and M. Novaga, Uniqueness of the Cheeger set of a convex body. Pacific J. Math. 232 (2007) 77–90. Zbl1221.35171MR2358032
- [9] A. Chambolle, An algorithm for total variation minimization and applications, Special issue on mathematics and image analysis. J. Math. Imaging Vision 20 (2004) 89–97. MR2049783
- [10] A. Chambolle and P.-L. Lions, Image recovery via total variation minimization. Numer. Math. 76 (1997) 167–188. Zbl0874.68299MR1440119
- [11] P.-L. Combettes, A block-iterative surrogate constraint splitting method for quadratic signal recovery. IEEE Trans. Signal Process. 51 (2003) 1771–1782. MR1996963
- [12] P.-L. Combettes and J.-C. Pesquet, image restoration subject to a total variation constraint. IEEE Trans. Image Process. 13 (2004) 1213–1222.
- [13] N. Cristescu, A model of stability of slopes in Slope Stability 2000, in Proceedings of Sessions of Geo-Denver 2000, D.V. Griffiths, G.A. Fenton, T.R. Martin Eds., Geotechnical special publication 101 (2000) 86–98.
- [14] F. Demengel, Théorèmes d’existence pour des équations avec l’opérateur “1-Laplacien”, première valeur propre de $-{\Delta}_{1}$. C. R. Math. Acad. Sci. Paris 334 (2002) 1071–1076. Zbl1142.35408MR1911649
- [15] F. Demengel, Some existence’s results for noncoercive “1-Laplacian” operator. Asymptotic Anal. 43 (2005) 287–322. Zbl1192.35036MR2160702
- [16] G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972). Zbl0298.73001MR464857
- [17] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics in Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1999). Zbl0939.49002MR1727362
- [18] L.C. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press (1992). Zbl0804.28001MR1158660
- [19] R. Hassani, I.R. Ionescu and T. Lachand-Robert, Shape optimization and supremal minimization approaches in landslides modeling. Appl. Math. Opt. 52 (2005) 349–364. Zbl1081.49030MR2174019
- [20] P. Hild, I.R. Ionescu, T. Lachand-Robert and I. Rosca, The blocking of an inhomogeneous Bingham fluid. Applications to landslides. ESAIM: M2AN 36 (2002) 1013–1026. Zbl1057.76004MR1958656
- [21] I.R. Ionescu and T. Lachand-Robert, Generalized Cheeger sets related to landslides. Calc. Var. Partial Differential Equations 23 (2005) 227–249. Zbl1062.49036MR2138084
- [22] R. Nozawa, Max-flow min-cut theorem in an anisotropic network. Osaka J. Math. 27 (1990) 805–842. Zbl0723.90020MR1088184
- [23] L.I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D 60 (1992) 259–268. Zbl0780.49028
- [24] G. Strang, Maximal flow through a domain. Math. Programming 26 (1983) 123–143. Zbl0513.90026MR700642
- [25] G. Strang, Maximum flows and minimum cuts in the plane. J. Global Optimization (to appear). MR2490506

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.