Approximation of maximal Cheeger sets by projection

Guillaume Carlier; Myriam Comte; Gabriel Peyré

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2009)

  • Volume: 43, Issue: 1, page 139-150
  • ISSN: 0764-583X

Abstract

top
This article deals with the numerical computation of the Cheeger constant and the approximation of the maximal Cheeger set of a given subset of d . This problem is motivated by landslide modelling as well as by the continuous maximal flow problem. Using the fact that the maximal Cheeger set can be approximated by solving a rather simple projection problem, we propose a numerical strategy to compute maximal Cheeger sets and Cheeger constants.

How to cite

top

Carlier, Guillaume, Comte, Myriam, and Peyré, Gabriel. "Approximation of maximal Cheeger sets by projection." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 43.1 (2009): 139-150. <http://eudml.org/doc/245646>.

@article{Carlier2009,
abstract = {This article deals with the numerical computation of the Cheeger constant and the approximation of the maximal Cheeger set of a given subset of $\mathbb \{R\}^d$. This problem is motivated by landslide modelling as well as by the continuous maximal flow problem. Using the fact that the maximal Cheeger set can be approximated by solving a rather simple projection problem, we propose a numerical strategy to compute maximal Cheeger sets and Cheeger constants.},
author = {Carlier, Guillaume, Comte, Myriam, Peyré, Gabriel},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Cheeger sets; Cheeger constant; total variation minimization; projections; Cheeger set; Cheeger constants; landslide modeling; continuous maximal flow problem},
language = {eng},
number = {1},
pages = {139-150},
publisher = {EDP-Sciences},
title = {Approximation of maximal Cheeger sets by projection},
url = {http://eudml.org/doc/245646},
volume = {43},
year = {2009},
}

TY - JOUR
AU - Carlier, Guillaume
AU - Comte, Myriam
AU - Peyré, Gabriel
TI - Approximation of maximal Cheeger sets by projection
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2009
PB - EDP-Sciences
VL - 43
IS - 1
SP - 139
EP - 150
AB - This article deals with the numerical computation of the Cheeger constant and the approximation of the maximal Cheeger set of a given subset of $\mathbb {R}^d$. This problem is motivated by landslide modelling as well as by the continuous maximal flow problem. Using the fact that the maximal Cheeger set can be approximated by solving a rather simple projection problem, we propose a numerical strategy to compute maximal Cheeger sets and Cheeger constants.
LA - eng
KW - Cheeger sets; Cheeger constant; total variation minimization; projections; Cheeger set; Cheeger constants; landslide modeling; continuous maximal flow problem
UR - http://eudml.org/doc/245646
ER -

References

top
  1. [1] F. Alter and V. Caselles, Uniqueness of the Cheeger set of a convex body. Preprint (2007) available at http://cvgmt.sns.it. Zbl1167.52005MR2358032
  2. [2] F. Alter, V. Caselles and A. Chambolle, Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow. Interfaces Free Bound. 7 (2005) 29–53. Zbl1084.49003MR2126142
  3. [3] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs. Oxford University Press, New York (2000). Zbl0957.49001MR1857292
  4. [4] B. Appleton and H. Talbot, Globally minimal surfaces by continuous maximal flows. IEEE Trans. Pattern Anal. Mach. Intell. 28 (2006) 106–118. 
  5. [5] G. Bellettini, V. Caselles, A. Chambolle and M. Novaga, Crystalline mean curvature flow of convex sets. Arch. Ration. Mech. Anal. 179 (2006) 109–152. Zbl1148.53049MR2208291
  6. [6] G. Buttazzo, G. Carlier and M. Comte, On the selection of maximal Cheeger sets. Differential Integral Equations 20 (2007) 991–1004. Zbl1212.49019MR2349376
  7. [7] G. Carlier and M. Comte, On a weighted total variation minimization problem. J. Funct. Anal. 250 (2007) 214–226. Zbl1120.49011MR2345913
  8. [8] V. Caselles, A. Chambolle and M. Novaga, Uniqueness of the Cheeger set of a convex body. Pacific J. Math. 232 (2007) 77–90. Zbl1221.35171MR2358032
  9. [9] A. Chambolle, An algorithm for total variation minimization and applications, Special issue on mathematics and image analysis. J. Math. Imaging Vision 20 (2004) 89–97. MR2049783
  10. [10] A. Chambolle and P.-L. Lions, Image recovery via total variation minimization. Numer. Math. 76 (1997) 167–188. Zbl0874.68299MR1440119
  11. [11] P.-L. Combettes, A block-iterative surrogate constraint splitting method for quadratic signal recovery. IEEE Trans. Signal Process. 51 (2003) 1771–1782. MR1996963
  12. [12] P.-L. Combettes and J.-C. Pesquet, image restoration subject to a total variation constraint. IEEE Trans. Image Process. 13 (2004) 1213–1222. 
  13. [13] N. Cristescu, A model of stability of slopes in Slope Stability 2000, in Proceedings of Sessions of Geo-Denver 2000, D.V. Griffiths, G.A. Fenton, T.R. Martin Eds., Geotechnical special publication 101 (2000) 86–98. 
  14. [14] F. Demengel, Théorèmes d’existence pour des équations avec l’opérateur “1-Laplacien”, première valeur propre de - Δ 1 . C. R. Math. Acad. Sci. Paris 334 (2002) 1071–1076. Zbl1142.35408MR1911649
  15. [15] F. Demengel, Some existence’s results for noncoercive “1-Laplacian” operator. Asymptotic Anal. 43 (2005) 287–322. Zbl1192.35036MR2160702
  16. [16] G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972). Zbl0298.73001MR464857
  17. [17] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics in Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1999). Zbl0939.49002MR1727362
  18. [18] L.C. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press (1992). Zbl0804.28001MR1158660
  19. [19] R. Hassani, I.R. Ionescu and T. Lachand-Robert, Shape optimization and supremal minimization approaches in landslides modeling. Appl. Math. Opt. 52 (2005) 349–364. Zbl1081.49030MR2174019
  20. [20] P. Hild, I.R. Ionescu, T. Lachand-Robert and I. Rosca, The blocking of an inhomogeneous Bingham fluid. Applications to landslides. ESAIM: M2AN 36 (2002) 1013–1026. Zbl1057.76004MR1958656
  21. [21] I.R. Ionescu and T. Lachand-Robert, Generalized Cheeger sets related to landslides. Calc. Var. Partial Differential Equations 23 (2005) 227–249. Zbl1062.49036MR2138084
  22. [22] R. Nozawa, Max-flow min-cut theorem in an anisotropic network. Osaka J. Math. 27 (1990) 805–842. Zbl0723.90020MR1088184
  23. [23] L.I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D 60 (1992) 259–268. Zbl0780.49028
  24. [24] G. Strang, Maximal flow through a domain. Math. Programming 26 (1983) 123–143. Zbl0513.90026MR700642
  25. [25] G. Strang, Maximum flows and minimum cuts in the plane. J. Global Optimization (to appear). MR2490506

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.