Free group languages : rational versus recognizable
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2004)
- Volume: 38, Issue: 1, page 49-67
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. Berstel, Transductions and Context-free Languages. Teubner (1979). Zbl0424.68040MR549481
- [2] J.C. Birget, S. Margolis, J. Meakin and P. Weil, PSPACE-completeness of certain algorithmic problems on the subgroups of the free groups, in Proc. ICALP 94. Lect. Notes Comput. Sci. (1994) 274-285. MR1334115
- [3] M. Hall Jr., The Theory of Groups. AMS Chelsea Publishing (1959). Zbl0919.20001MR103215
- [4] R.C. Lyndon and P.E. Schupp, Combinatorial Group Theory. Springer-Verlag (1977). Zbl0368.20023MR577064
- [5] J. Sakarovitch, Syntaxe des langages de Chomsky, essai sur le déterminisme. Ph.D. thesis, Université Paris VII (1979).
- [6] J. Sakarovitch, A problem on rational subsets of the free group. Amer. Math. Monthly 91 (1984) 499-501. Zbl0604.20024MR1540497
- [7] G. Sénizergues, On the rational subsets of the free group. Acta Informatica 33 (1996) 281-296. Zbl0858.68044MR1393764
- [8] P.V. Silva, On free inverse monoid languages. RAIRO: Theoret. Informatics Appl. 30 (1996) 349-378. Zbl0867.68074MR1427939
- [9] P.V. Silva, Recognizable subsets of a group: finite extensions and the abelian case. Bulletin of the EATCS 77 (2002) 195-215. Zbl1015.20049MR1920336