Numerical precision for differential inclusions with uniqueness

Jérôme Bastien; Michelle Schatzman

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2002)

  • Volume: 36, Issue: 3, page 427-460
  • ISSN: 0764-583X

Abstract

top
In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is 1 / 2 in general and 1 when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl’s rheological model, our estimates in maximum norm do not depend on spatial dimension.

How to cite

top

Bastien, Jérôme, and Schatzman, Michelle. "Numerical precision for differential inclusions with uniqueness." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 36.3 (2002): 427-460. <http://eudml.org/doc/245686>.

@article{Bastien2002,
abstract = {In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is $1/2$ in general and $1$ when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl’s rheological model, our estimates in maximum norm do not depend on spatial dimension.},
author = {Bastien, Jérôme, Schatzman, Michelle},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {differential inclusions; existence and uniqueness; multivalued maximal monotone operator; sub-differential; numerical analysis; implicit Euler numerical scheme; frictions laws; Differential inclusion; maximal monotone evolution system; existence; uniqueness; numerical precision},
language = {eng},
number = {3},
pages = {427-460},
publisher = {EDP-Sciences},
title = {Numerical precision for differential inclusions with uniqueness},
url = {http://eudml.org/doc/245686},
volume = {36},
year = {2002},
}

TY - JOUR
AU - Bastien, Jérôme
AU - Schatzman, Michelle
TI - Numerical precision for differential inclusions with uniqueness
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2002
PB - EDP-Sciences
VL - 36
IS - 3
SP - 427
EP - 460
AB - In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is $1/2$ in general and $1$ when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl’s rheological model, our estimates in maximum norm do not depend on spatial dimension.
LA - eng
KW - differential inclusions; existence and uniqueness; multivalued maximal monotone operator; sub-differential; numerical analysis; implicit Euler numerical scheme; frictions laws; Differential inclusion; maximal monotone evolution system; existence; uniqueness; numerical precision
UR - http://eudml.org/doc/245686
ER -

References

top
  1. [1] J. Bastien, M. Schatzman and C.-H. Lamarque, Study of some rheological models with a finite number of degrees of freedom. Eur. J. Mech. A Solids 19 (2000) 277–307. Zbl0954.74011
  2. [2] J. Bastien, M. Schatzman and C.-H. Lamarque, Study of an elastoplastic model with an infinite number of internal degrees of freedom. Eur. J. Mech. A Solids 21 (2002) 199–222. Zbl1023.74009
  3. [3] J. Bastien, Étude théorique et numérique d’inclusions différentielles maximales monotones. Applications à des modèles élastoplastiques. Ph.D. Thesis, Université Lyon I (2000). number: 96-2000. 
  4. [4] H. Brezis, Perturbations non linéaires d’opérateurs maximaux monotones. C. R. Acad. Sci. Paris Sér. A-B 269 (1969) 566–569. Zbl0182.19001
  5. [5] H. Brezis, Problèmes unilatéraux. J. Math. Pures Appl. 51 (1972) 1–168. Zbl0237.35001
  6. [6] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam (1973). North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). Zbl0252.47055MR348562
  7. [7] M.G. Crandall and L.C. Evans, On the relation of the operator / s + / τ to evolution governed by accretive operators. Israel J. Math. 21 (1975) 261–278. Zbl0351.34037
  8. [8] R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. 8. Masson, Paris (1988). Évolution: semi-groupe, variationnel., Reprint of the edition of 1985. Zbl0749.35004MR1016605
  9. [9] A.L. Dontchev and E.M. Farkhi, Error estimates for discretized differential inclusion. Computing 41 (1989) 349–358. Zbl0667.65067
  10. [10] A.L. Dontchev and F. Lempio, Difference methods for differential inclusions: a survey. SIAM Rev. 34 (1992) 263–294. Zbl0757.34018
  11. [11] M.A. Freedman, A random walk for the solution sought: remark on the difference scheme approach to nonlinear semigroups and evolution operators. Semigroup Forum 36 (1987) 117–126. Zbl0644.47048
  12. [12] U. Hornung, ADI-methods for nonlinear variational inequalities of evolution. Iterative solution of nonlinear systems of equations. Lecture Notes in Math. 953, Springer, Berlin-New York (1982) 138–148. Zbl0492.65037
  13. [13] A.G. Kartsatos, The existence of a method of lines for evolution equations involving maximal monotone operators and locally defined perturbations. Panamer. Math. J. 1 (1991) 17–27. Zbl0728.34069
  14. [14] F. Lempio and V. Veliov, Discrete approximations of differential inclusions. Bayreuth. Math. Schr. 54 (1998) 149–232. Zbl0922.65059
  15. [15] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1. Dunod, Paris (1968). Zbl0165.10801MR247243
  16. [16] G. Lippold, Error estimates for the implicit Euler approximation of an evolution inequality. Nonlinear Anal. 15 (1990) 1077–1089. Zbl0727.65058
  17. [17] V. Veliov, Second-order discrete approximation to linear differential inclusions. SIAM J. Numer. Anal. 29 (1992) 439–451. Zbl0754.65070
  18. [18] E. Zeidler, Nonlinear functional analysis and its applications. II/B. Springer-Verlag, New York (1990). Nonlinear monotone operators, Translated from german by the author and Leo F. Boron. Zbl0684.47029MR1033498

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.