Numerical precision for differential inclusions with uniqueness
Jérôme Bastien; Michelle Schatzman
- Volume: 36, Issue: 3, page 427-460
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBastien, Jérôme, and Schatzman, Michelle. "Numerical precision for differential inclusions with uniqueness." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 36.3 (2002): 427-460. <http://eudml.org/doc/245686>.
@article{Bastien2002,
abstract = {In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is $1/2$ in general and $1$ when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl’s rheological model, our estimates in maximum norm do not depend on spatial dimension.},
author = {Bastien, Jérôme, Schatzman, Michelle},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {differential inclusions; existence and uniqueness; multivalued maximal monotone operator; sub-differential; numerical analysis; implicit Euler numerical scheme; frictions laws; Differential inclusion; maximal monotone evolution system; existence; uniqueness; numerical precision},
language = {eng},
number = {3},
pages = {427-460},
publisher = {EDP-Sciences},
title = {Numerical precision for differential inclusions with uniqueness},
url = {http://eudml.org/doc/245686},
volume = {36},
year = {2002},
}
TY - JOUR
AU - Bastien, Jérôme
AU - Schatzman, Michelle
TI - Numerical precision for differential inclusions with uniqueness
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2002
PB - EDP-Sciences
VL - 36
IS - 3
SP - 427
EP - 460
AB - In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is $1/2$ in general and $1$ when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl’s rheological model, our estimates in maximum norm do not depend on spatial dimension.
LA - eng
KW - differential inclusions; existence and uniqueness; multivalued maximal monotone operator; sub-differential; numerical analysis; implicit Euler numerical scheme; frictions laws; Differential inclusion; maximal monotone evolution system; existence; uniqueness; numerical precision
UR - http://eudml.org/doc/245686
ER -
References
top- [1] J. Bastien, M. Schatzman and C.-H. Lamarque, Study of some rheological models with a finite number of degrees of freedom. Eur. J. Mech. A Solids 19 (2000) 277–307. Zbl0954.74011
- [2] J. Bastien, M. Schatzman and C.-H. Lamarque, Study of an elastoplastic model with an infinite number of internal degrees of freedom. Eur. J. Mech. A Solids 21 (2002) 199–222. Zbl1023.74009
- [3] J. Bastien, Étude théorique et numérique d’inclusions différentielles maximales monotones. Applications à des modèles élastoplastiques. Ph.D. Thesis, Université Lyon I (2000). number: 96-2000.
- [4] H. Brezis, Perturbations non linéaires d’opérateurs maximaux monotones. C. R. Acad. Sci. Paris Sér. A-B 269 (1969) 566–569. Zbl0182.19001
- [5] H. Brezis, Problèmes unilatéraux. J. Math. Pures Appl. 51 (1972) 1–168. Zbl0237.35001
- [6] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam (1973). North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). Zbl0252.47055MR348562
- [7] M.G. Crandall and L.C. Evans, On the relation of the operator to evolution governed by accretive operators. Israel J. Math. 21 (1975) 261–278. Zbl0351.34037
- [8] R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. 8. Masson, Paris (1988). Évolution: semi-groupe, variationnel., Reprint of the edition of 1985. Zbl0749.35004MR1016605
- [9] A.L. Dontchev and E.M. Farkhi, Error estimates for discretized differential inclusion. Computing 41 (1989) 349–358. Zbl0667.65067
- [10] A.L. Dontchev and F. Lempio, Difference methods for differential inclusions: a survey. SIAM Rev. 34 (1992) 263–294. Zbl0757.34018
- [11] M.A. Freedman, A random walk for the solution sought: remark on the difference scheme approach to nonlinear semigroups and evolution operators. Semigroup Forum 36 (1987) 117–126. Zbl0644.47048
- [12] U. Hornung, ADI-methods for nonlinear variational inequalities of evolution. Iterative solution of nonlinear systems of equations. Lecture Notes in Math. 953, Springer, Berlin-New York (1982) 138–148. Zbl0492.65037
- [13] A.G. Kartsatos, The existence of a method of lines for evolution equations involving maximal monotone operators and locally defined perturbations. Panamer. Math. J. 1 (1991) 17–27. Zbl0728.34069
- [14] F. Lempio and V. Veliov, Discrete approximations of differential inclusions. Bayreuth. Math. Schr. 54 (1998) 149–232. Zbl0922.65059
- [15] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1. Dunod, Paris (1968). Zbl0165.10801MR247243
- [16] G. Lippold, Error estimates for the implicit Euler approximation of an evolution inequality. Nonlinear Anal. 15 (1990) 1077–1089. Zbl0727.65058
- [17] V. Veliov, Second-order discrete approximation to linear differential inclusions. SIAM J. Numer. Anal. 29 (1992) 439–451. Zbl0754.65070
- [18] E. Zeidler, Nonlinear functional analysis and its applications. II/B. Springer-Verlag, New York (1990). Nonlinear monotone operators, Translated from german by the author and Leo F. Boron. Zbl0684.47029MR1033498
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.