Inf-datalog, modal logic and complexities
Eugénie Foustoucos; Irène Guessarian
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2009)
- Volume: 43, Issue: 1, page 1-21
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topFoustoucos, Eugénie, and Guessarian, Irène. "Inf-datalog, modal logic and complexities." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 43.1 (2009): 1-21. <http://eudml.org/doc/245704>.
@article{Foustoucos2009,
abstract = {Inf-Datalog extends the usual least fixpoint semantics of Datalog with greatest fixpoint semantics: we defined inf-Datalog and characterized the expressive power of various fragments of inf-Datalog in [16]. In the present paper, we study the complexity of query evaluation on finite models for (various fragments of) inf-Datalog. We deduce a unified and elementary proof that global model-checking (i.e. computing all nodes satisfying a formula in a given structure) has 1. quadratic data complexity in time and linear program complexity in space for $CTL$ and alternation-free modal $\mu $-calculus, and 2. linear-space (data and program) complexities, linear-time program complexity and polynomial-time data complexity for $L\mu _k$ (modal $\mu $-calculus with fixed alternation-depth at most $k$).},
author = {Foustoucos, Eugénie, Guessarian, Irène},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {databases; model-checking; specification languages; performance evaluation},
language = {eng},
number = {1},
pages = {1-21},
publisher = {EDP-Sciences},
title = {Inf-datalog, modal logic and complexities},
url = {http://eudml.org/doc/245704},
volume = {43},
year = {2009},
}
TY - JOUR
AU - Foustoucos, Eugénie
AU - Guessarian, Irène
TI - Inf-datalog, modal logic and complexities
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2009
PB - EDP-Sciences
VL - 43
IS - 1
SP - 1
EP - 21
AB - Inf-Datalog extends the usual least fixpoint semantics of Datalog with greatest fixpoint semantics: we defined inf-Datalog and characterized the expressive power of various fragments of inf-Datalog in [16]. In the present paper, we study the complexity of query evaluation on finite models for (various fragments of) inf-Datalog. We deduce a unified and elementary proof that global model-checking (i.e. computing all nodes satisfying a formula in a given structure) has 1. quadratic data complexity in time and linear program complexity in space for $CTL$ and alternation-free modal $\mu $-calculus, and 2. linear-space (data and program) complexities, linear-time program complexity and polynomial-time data complexity for $L\mu _k$ (modal $\mu $-calculus with fixed alternation-depth at most $k$).
LA - eng
KW - databases; model-checking; specification languages; performance evaluation
UR - http://eudml.org/doc/245704
ER -
References
top- [1] S. Abiteboul, R. Hull and V. Vianu, Foundations of databases. Addison-Wesley (1995). Zbl0848.68031
- [2] A. Arnold and P. Crubillé, A linear algorithm to solve fixed-point equations on transition systems. Inform. Process. Lett. 29 (1988) 57–66. Zbl0663.68075MR974202
- [3] A. Arnold and D. Niwiński, Rudiments of -calculus. Stud. Logic Found. Math. 146, Elsevier Science, North-Holland, Amsterdam (2001). Zbl0968.03002MR1854973
- [4] J. Bradfield, Fixpoint alternation: Arithmetic, transition systems, and the binary tree. RAIRO-Theor. Inf. Appl. 33 (1999) 341–356. Zbl0945.68126MR1748660
- [5] A. Browne, E. Clarke, S. Jha, D. Long and W. Marrero, An improved algorithm for the evaluation of fixpoint expressions. Theor. Comput. Sci. 178 (1997) 237–255. Zbl0901.68118MR1453852
- [6] W. Charatonik, D. McAllester, D. Niwínski, A. Podelski and I. Walukiewicz, The horn Mu-calculus. LICS (1998) 58–69. Zbl0945.03541MR1654520
- [7] E.M. Clarke, E.A. Emerson and A.P. Sistla, Automatic Verification of finite-state concurrent systems using temporal logic specifications. ACM TOPLAS 8 (1986) 244–263. Zbl0591.68027
- [8] R. Cleaveland and B. Steffan, A linear time model-checking algorithm for the alternation-free modal mu-calculus. Formal Method. Syst. Des. 2 (1993) 121–148. Zbl0772.68038
- [9] E. Emerson, Temporal and modal logic. Handbook of Theoretical Computer Science (1990) 997–1072. Zbl0900.03030MR1127201
- [10] E. Emerson, Model-Checking and the Mu-Calculus, in Descriptive Complexity and Finite Models, edited by N. Immerman and Ph. Kolaitis, American Mathematical Society (1997). Zbl0877.03020MR1451385
- [11] E.A. Emerson and C.L. Lei, Efficient model-checking in fragments of the propositional -calculus, in Proc. of 1rst Symposium on Logic in Computer Science (1986) 267–278.
- [12] E. Foustoucos and I. Guessarian, Complexity of Monadic inf-datalog. Application to temporal logic. Extended abstract in Proceedings 4th Panhellenic Logic Symposium (2003) 95–99.
- [13] G. Gottlob and C. Koch, Monadic Datalog and the expressive power of web information extraction languages. Proc. PODS’02 (2002) 17–28. Zbl1316.68045
- [14] G. Gottlob, E. Grädel and H. Veith, Datalog LITE: temporal versus deductive reasoning in verification. ACM T. Comput. Log. 3 (2002) 39–74. MR1902106
- [15] A. Griffault and A. Vincent, The Mec 5 model-checker, CAV’04. Lect. Notes Comput. Sci. 3114 (2004) 488–491. Zbl1103.68619
- [16] I. Guessarian, E. Foustoucos, T. Andronikos and F. Afrati, On temporal logic versus Datalog. Theor. Comput. Sci. 303 (2003) 103–133. Zbl1019.03021MR1990744
- [17] M. Jurdzinski, Small progress measures for solving parity games. Proc. STACS’2000 (2000) 290–301. Zbl0962.68111MR1781740
- [18] M. Jurdzinski, M. Paterson and U. Zwick, A Deterministic subexponential algorithm for solving parity games. Proc. SODA (2006) 117–123. Zbl1192.91013MR2368806
- [19] D. Kozen, Results on the propositional -calculus. Theor. Comput. Sci. 27 (1983) 333–354. Zbl0553.03007MR731069
- [20] A. Mader, The modal -calculus, model-checking, equations systems and Gauss elimination. TACAS 95 (1995) 44–57.
- [21] D. Park, Finiteness is -ineffable. Theor. Comput. Sci. 3 (1976) 173–181. Zbl0353.02027MR437297
- [22] H. Seidl, Fast and simple nested fixpoints. Inform. Process. Lett. 59 (1996) 303–308. Zbl0900.68458MR1417647
- [23] A. Vincent, Conception et réalisation d’un vérificateur de modèles AltaRica. Ph.D. Thesis, LaBRI, University of Bordeaux 1 (2003) http://altarica.labri.fr/Doc/Biblio/Author/VINCENT-A.html
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.