On the lower semicontinuity of supremal functionals

Michele Gori; Francesco Maggi

ESAIM: Control, Optimisation and Calculus of Variations (2003)

  • Volume: 9, page 135-143
  • ISSN: 1292-8119

Abstract

top
In this paper we study the lower semicontinuity problem for a supremal functional of the form F ( u , Ω ) = ess sup x Ω f ( x , u ( x ) , D u ( x ) ) with respect to the strong convergence in L ( Ω ) , furnishing a comparison with the analogous theory developed by Serrin for integrals. A sort of Mazur’s lemma for gradients of uniformly converging sequences is proved.

How to cite

top

Gori, Michele, and Maggi, Francesco. "On the lower semicontinuity of supremal functionals." ESAIM: Control, Optimisation and Calculus of Variations 9 (2003): 135-143. <http://eudml.org/doc/245720>.

@article{Gori2003,
abstract = {In this paper we study the lower semicontinuity problem for a supremal functional of the form $F(u,\Omega )= \underset\{x\in \Omega \}\{\rm ess\,sup\} f(x,u(x),Du(x))$ with respect to the strong convergence in $L^\infty (\Omega )$, furnishing a comparison with the analogous theory developed by Serrin for integrals. A sort of Mazur’s lemma for gradients of uniformly converging sequences is proved.},
author = {Gori, Michele, Maggi, Francesco},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {supremal functionals; lower semicontinuity; level convexity; calculus of variations; Mazur’s lemma; Mazur lemma},
language = {eng},
pages = {135-143},
publisher = {EDP-Sciences},
title = {On the lower semicontinuity of supremal functionals},
url = {http://eudml.org/doc/245720},
volume = {9},
year = {2003},
}

TY - JOUR
AU - Gori, Michele
AU - Maggi, Francesco
TI - On the lower semicontinuity of supremal functionals
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2003
PB - EDP-Sciences
VL - 9
SP - 135
EP - 143
AB - In this paper we study the lower semicontinuity problem for a supremal functional of the form $F(u,\Omega )= \underset{x\in \Omega }{\rm ess\,sup} f(x,u(x),Du(x))$ with respect to the strong convergence in $L^\infty (\Omega )$, furnishing a comparison with the analogous theory developed by Serrin for integrals. A sort of Mazur’s lemma for gradients of uniformly converging sequences is proved.
LA - eng
KW - supremal functionals; lower semicontinuity; level convexity; calculus of variations; Mazur’s lemma; Mazur lemma
UR - http://eudml.org/doc/245720
ER -

References

top
  1. [1] E. Acerbi, G. Buttazzo and F. Prinari, The class of functionals which can be represented by a supremum. J. Convex Anal. 9 (to appear). Zbl1012.49010MR1917396
  2. [2] L. Ambrosio, New lower semicontinuity results for integral functionals. Rend. Accad. Naz. Sci. XL 11 (1987) 1-42. Zbl0642.49007MR930856
  3. [3] G. Aronsson, Minimization problems for the functional sup x F ( x , f ( x ) , f ' ( x ) ) . Ark. Mat. 6 (1965) 33-53. Zbl0156.12502MR196551
  4. [4] G. Aronsson, Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6 (1967) 551-561. Zbl0158.05001MR217665
  5. [5] G. Aronsson, Minimization problems for the functional sup x F ( x , f ( x ) , f ' ( x ) ) II. Ark. Mat. 6 (1969) 409-431. Zbl0156.12502MR203541
  6. [6] G. Aronsson, Minimization problems for the functional sup x F ( x , f ( x ) , f ' ( x ) ) III. Ark. Mat. 7 (1969) 509-512. Zbl0181.11902MR240690
  7. [7] E.N. Barron, R.R. Jensen and C.Y. Wang, Lower semicontinuity of L functionals. Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001) 495-517. Zbl1034.49008MR1841130
  8. [8] E.N. Barron and W. Liu, Calculus of variations in L . Appl. Math. Optim. 35 (1997) 237-263. Zbl0871.49017MR1431800
  9. [9] G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Longman, Harlow, Pitman Res. Notes Math. Ser. 207 (1989). Zbl0669.49005MR1020296
  10. [10] L. Carbone and C. Sbordone, Some properties of Γ -limits of integral functionals. Ann. Mat. Pura Appl. 122 (1979) 1-60. Zbl0474.49016MR565062
  11. [11] G. Dal Maso, Integral representation on B V ( Ω ) of Γ -limits of variational integrals. Manuscripta Math. 30 (1980) 387-416. Zbl0435.49016MR567216
  12. [12] E. De Giorgi, Teoremi di semicontinuità nel calcolo delle variazioni. Istituto Nazionale di Alta Matematica, Roma (1968). 
  13. [13] E. De Giorgi, G. Buttazzo and G. Dal Maso, On the lower semicontinuity of certain integral functionals. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur., Rend. 74 (1983) 274-282. Zbl0554.49006MR758347
  14. [14] G. Eisen, A counterexample for some lower semicontinuity results. Math. Z. 162 (1978) 241-243. Zbl0369.49009MR508840
  15. [15] I. Fonseca and G. Leoni, Some remarks on lower semicontinuity. Indiana Univ. Math. J. 49 (2000) 617-635. Zbl0980.49018MR1793684
  16. [16] I. Fonseca and G. Leoni, On lower semicontinuity and relaxation. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 519-565. Zbl1003.49015MR1838501
  17. [17] M. Gori, F. Maggi and P. Marcellini, On some sharp lower semicontinuity condition in L 1 . Differential Integral Equations (to appear). Zbl1028.49012MR1948872
  18. [18] M. Gori and P. Marcellini, An extension of the Serrin’s lower semicontinuity theorem. J. Convex Anal. 9 (2002) 1-28. Zbl1019.49021
  19. [19] A.D. Ioffe, On lower semicontinuity of integral functionals. SIAM J. Control Optim. 15 (1977) 521-538. Zbl0361.46037MR637234
  20. [20] C.Y. Pauc, La méthode métrique en calcul des variations. Hermann, Paris (1941). Zbl0027.10502JFM67.1036.01
  21. [21] J. Serrin, On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc. 101 (1961) 139-167. Zbl0102.04601MR138018

NotesEmbed ?

top

You must be logged in to post comments.