On the lower semicontinuity of supremal functionals

Michele Gori; Francesco Maggi

ESAIM: Control, Optimisation and Calculus of Variations (2003)

  • Volume: 9, page 135-143
  • ISSN: 1292-8119

Abstract

top
In this paper we study the lower semicontinuity problem for a supremal functional of the form F ( u , Ω ) = ess sup x Ω f ( x , u ( x ) , D u ( x ) ) with respect to the strong convergence in L ( Ω ) , furnishing a comparison with the analogous theory developed by Serrin for integrals. A sort of Mazur’s lemma for gradients of uniformly converging sequences is proved.

How to cite

top

Gori, Michele, and Maggi, Francesco. "On the lower semicontinuity of supremal functionals." ESAIM: Control, Optimisation and Calculus of Variations 9 (2003): 135-143. <http://eudml.org/doc/245720>.

@article{Gori2003,
abstract = {In this paper we study the lower semicontinuity problem for a supremal functional of the form $F(u,\Omega )= \underset\{x\in \Omega \}\{\rm ess\,sup\} f(x,u(x),Du(x))$ with respect to the strong convergence in $L^\infty (\Omega )$, furnishing a comparison with the analogous theory developed by Serrin for integrals. A sort of Mazur’s lemma for gradients of uniformly converging sequences is proved.},
author = {Gori, Michele, Maggi, Francesco},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {supremal functionals; lower semicontinuity; level convexity; calculus of variations; Mazur’s lemma; Mazur lemma},
language = {eng},
pages = {135-143},
publisher = {EDP-Sciences},
title = {On the lower semicontinuity of supremal functionals},
url = {http://eudml.org/doc/245720},
volume = {9},
year = {2003},
}

TY - JOUR
AU - Gori, Michele
AU - Maggi, Francesco
TI - On the lower semicontinuity of supremal functionals
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2003
PB - EDP-Sciences
VL - 9
SP - 135
EP - 143
AB - In this paper we study the lower semicontinuity problem for a supremal functional of the form $F(u,\Omega )= \underset{x\in \Omega }{\rm ess\,sup} f(x,u(x),Du(x))$ with respect to the strong convergence in $L^\infty (\Omega )$, furnishing a comparison with the analogous theory developed by Serrin for integrals. A sort of Mazur’s lemma for gradients of uniformly converging sequences is proved.
LA - eng
KW - supremal functionals; lower semicontinuity; level convexity; calculus of variations; Mazur’s lemma; Mazur lemma
UR - http://eudml.org/doc/245720
ER -

References

top
  1. [1] E. Acerbi, G. Buttazzo and F. Prinari, The class of functionals which can be represented by a supremum. J. Convex Anal. 9 (to appear). Zbl1012.49010MR1917396
  2. [2] L. Ambrosio, New lower semicontinuity results for integral functionals. Rend. Accad. Naz. Sci. XL 11 (1987) 1-42. Zbl0642.49007MR930856
  3. [3] G. Aronsson, Minimization problems for the functional sup x F ( x , f ( x ) , f ' ( x ) ) . Ark. Mat. 6 (1965) 33-53. Zbl0156.12502MR196551
  4. [4] G. Aronsson, Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6 (1967) 551-561. Zbl0158.05001MR217665
  5. [5] G. Aronsson, Minimization problems for the functional sup x F ( x , f ( x ) , f ' ( x ) ) II. Ark. Mat. 6 (1969) 409-431. Zbl0156.12502MR203541
  6. [6] G. Aronsson, Minimization problems for the functional sup x F ( x , f ( x ) , f ' ( x ) ) III. Ark. Mat. 7 (1969) 509-512. Zbl0181.11902MR240690
  7. [7] E.N. Barron, R.R. Jensen and C.Y. Wang, Lower semicontinuity of L functionals. Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001) 495-517. Zbl1034.49008MR1841130
  8. [8] E.N. Barron and W. Liu, Calculus of variations in L . Appl. Math. Optim. 35 (1997) 237-263. Zbl0871.49017MR1431800
  9. [9] G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Longman, Harlow, Pitman Res. Notes Math. Ser. 207 (1989). Zbl0669.49005MR1020296
  10. [10] L. Carbone and C. Sbordone, Some properties of Γ -limits of integral functionals. Ann. Mat. Pura Appl. 122 (1979) 1-60. Zbl0474.49016MR565062
  11. [11] G. Dal Maso, Integral representation on B V ( Ω ) of Γ -limits of variational integrals. Manuscripta Math. 30 (1980) 387-416. Zbl0435.49016MR567216
  12. [12] E. De Giorgi, Teoremi di semicontinuità nel calcolo delle variazioni. Istituto Nazionale di Alta Matematica, Roma (1968). 
  13. [13] E. De Giorgi, G. Buttazzo and G. Dal Maso, On the lower semicontinuity of certain integral functionals. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur., Rend. 74 (1983) 274-282. Zbl0554.49006MR758347
  14. [14] G. Eisen, A counterexample for some lower semicontinuity results. Math. Z. 162 (1978) 241-243. Zbl0369.49009MR508840
  15. [15] I. Fonseca and G. Leoni, Some remarks on lower semicontinuity. Indiana Univ. Math. J. 49 (2000) 617-635. Zbl0980.49018MR1793684
  16. [16] I. Fonseca and G. Leoni, On lower semicontinuity and relaxation. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 519-565. Zbl1003.49015MR1838501
  17. [17] M. Gori, F. Maggi and P. Marcellini, On some sharp lower semicontinuity condition in L 1 . Differential Integral Equations (to appear). Zbl1028.49012MR1948872
  18. [18] M. Gori and P. Marcellini, An extension of the Serrin’s lower semicontinuity theorem. J. Convex Anal. 9 (2002) 1-28. Zbl1019.49021
  19. [19] A.D. Ioffe, On lower semicontinuity of integral functionals. SIAM J. Control Optim. 15 (1977) 521-538. Zbl0361.46037MR637234
  20. [20] C.Y. Pauc, La méthode métrique en calcul des variations. Hermann, Paris (1941). Zbl0027.10502JFM67.1036.01
  21. [21] J. Serrin, On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc. 101 (1961) 139-167. Zbl0102.04601MR138018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.