Γ -convergence and absolute minimizers for supremal functionals

Thierry Champion; Luigi De Pascale; Francesca Prinari

ESAIM: Control, Optimisation and Calculus of Variations (2004)

  • Volume: 10, Issue: 1, page 14-27
  • ISSN: 1292-8119

Abstract

top
In this paper, we prove that the L p approximants naturally associated to a supremal functional Γ -converge to it. This yields a lower semicontinuity result for supremal functionals whose supremand satisfy weak coercivity assumptions as well as a generalized Jensen inequality. The existence of minimizers for variational problems involving such functionals (together with a Dirichlet condition) then easily follows. In the scalar case we show the existence of at least one absolute minimizer (i.e. local solution) among these minimizers. We provide two different proofs of this fact relying on different assumptions and techniques.

How to cite

top

Champion, Thierry, Pascale, Luigi De, and Prinari, Francesca. "$\Gamma $-convergence and absolute minimizers for supremal functionals." ESAIM: Control, Optimisation and Calculus of Variations 10.1 (2004): 14-27. <http://eudml.org/doc/245585>.

@article{Champion2004,
abstract = {In this paper, we prove that the $L^p$ approximants naturally associated to a supremal functional $\Gamma $-converge to it. This yields a lower semicontinuity result for supremal functionals whose supremand satisfy weak coercivity assumptions as well as a generalized Jensen inequality. The existence of minimizers for variational problems involving such functionals (together with a Dirichlet condition) then easily follows. In the scalar case we show the existence of at least one absolute minimizer (i.e. local solution) among these minimizers. We provide two different proofs of this fact relying on different assumptions and techniques.},
author = {Champion, Thierry, Pascale, Luigi De, Prinari, Francesca},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {supremal functionals; lower semicontinuity; generalized Jensen inequality; absolute minimizer (AML; local minimizer); $L^p$ approximation; absolute minimizer; local minimizer; approximation},
language = {eng},
number = {1},
pages = {14-27},
publisher = {EDP-Sciences},
title = {$\Gamma $-convergence and absolute minimizers for supremal functionals},
url = {http://eudml.org/doc/245585},
volume = {10},
year = {2004},
}

TY - JOUR
AU - Champion, Thierry
AU - Pascale, Luigi De
AU - Prinari, Francesca
TI - $\Gamma $-convergence and absolute minimizers for supremal functionals
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2004
PB - EDP-Sciences
VL - 10
IS - 1
SP - 14
EP - 27
AB - In this paper, we prove that the $L^p$ approximants naturally associated to a supremal functional $\Gamma $-converge to it. This yields a lower semicontinuity result for supremal functionals whose supremand satisfy weak coercivity assumptions as well as a generalized Jensen inequality. The existence of minimizers for variational problems involving such functionals (together with a Dirichlet condition) then easily follows. In the scalar case we show the existence of at least one absolute minimizer (i.e. local solution) among these minimizers. We provide two different proofs of this fact relying on different assumptions and techniques.
LA - eng
KW - supremal functionals; lower semicontinuity; generalized Jensen inequality; absolute minimizer (AML; local minimizer); $L^p$ approximation; absolute minimizer; local minimizer; approximation
UR - http://eudml.org/doc/245585
ER -

References

top
  1. [1] E. Acerbi, G. Buttazzo and F. Prinari, On the class of functionals which can be represented by a supremum. J. Convex Anal. 9 (2002) 225-236. Zbl1012.49010MR1917396
  2. [2] G. Aronsson, Minimization Problems for the Functional sup x F ( x , f ( x ) , f ' ( x ) ) . Ark. Mat. 6 (1965) 33-53. Zbl0156.12502MR196551
  3. [3] G. Aronsson, Minimization Problems for the Functional sup x F ( x , f ( x ) , f ' ( x ) ) . II. Ark. Mat. 6 (1966) 409-431. Zbl0156.12502MR203541
  4. [4] G. Aronsson, Extension of Functions satisfying Lipschitz conditions. Ark. Mat. 6 (1967) 551-561. Zbl0158.05001MR217665
  5. [5] G. Aronsson, Minimization Problems for the Functional sup x F ( x , f ( x ) , f ' ( x ) ) . III. Ark. Mat. 7 (1969) 509-512. Zbl0181.11902MR240690
  6. [6] E.N. Barron, Viscosity solutions and analysis in L . Nonlinear Anal. Differential Equations Control. Montreal, QC (1998) 1-60. Kluwer Acad. Publ., Dordrecht, NATO Sci. Ser. C Math. Phys. Sci. 528 (1999). Zbl0973.49024MR1695005
  7. [7] E.N. Barron, R.R. Jensen and C.Y. Wang, Lower Semicontinuity of L functionals. Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001) 495-517. Zbl1034.49008MR1841130
  8. [8] E.N. Barron, R.R. Jensen and C.Y. Wang, The Euler equation and absolute minimizers of L functionals. Arch. Rational Mech. Anal. 157 (2001) 255-283. Zbl0979.49003MR1831173
  9. [9] T. Bhattacharya, E. DiBenedetto and J. Manfredi, Limits as p of Δ p u p = f and related extremal problems, Some topics in nonlinear PDEs. Turin (1989). Rend. Sem. Mat. Univ. Politec. Torino 1989, Special Issue (1991) 15-68. MR1155453
  10. [10] H. Berliocchi and J.M. Lasry, Intégrandes normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France 101 (1973) 129-184. Zbl0282.49041MR344980
  11. [11] M.G. Crandal and L.C. Evans, A remark on infinity harmonic functions, in Proc. of the USA-Chile Workshop on Nonlinear Analysis. Vina del Mar-Valparaiso (2000) 123-129. Electronic. Electron. J. Differential Equations Conf. 6. Southwest Texas State Univ., San Marcos, TX (2001). Zbl0964.35061MR1804769
  12. [12] M.G. Crandal, L.C. Evans and R.F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Partial Differential Equations 13 (2001) 123-139. Zbl0996.49019MR1861094
  13. [13] B. Dacorogna, Direct methods in the calculus of variations. Springer-Verlag, Berlin, Appl. Math. Sci. 78 (1989). Zbl0703.49001MR990890
  14. [14] G. Dal Maso, An Introduction to Γ -Convergence. Birkhauser, Basel, Progr. in Nonlinear Differential Equations Appl. 8 (1993). Zbl0816.49001MR1201152
  15. [15] G. Dal Maso and L. Modica, A general theory of variational functionals. Topics in functional analysis (1980–81) 149-221. Quaderni, Scuola Norm. Sup. Pisa, Pisa (1981). Zbl0493.49005
  16. [16] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975) 842-850. Zbl0339.49005MR448194
  17. [17] A. Garroni, V. Nesi and M. Ponsiglione, Dielectric Breakdown: Optimal bounds. Proc. Roy. Soc. London Sect. A 457 (2001) 2317-2335. Zbl0993.78015MR1862657
  18. [18] M. Gori and F. Maggi, On the lower semicontinuity of supremal functional. ESAIM: COCV 9 (2003) 135. Zbl1066.49010MR1957094
  19. [19] R.R. Jensen, Uniqueness of Lipschitz Extensions: Minimizing the Sup Norm of the Gradient. Arch. Rational Mech. Anal. 123 (1993) 51-74. Zbl0789.35008MR1218686
  20. [20] P. Juutinen, Absolutely Minimizing Lipschitz Extensions on a metric space. An. Ac. Sc. Fenn. Mathematica 27 (2002) 57-67. Zbl1064.54027MR1884349
  21. [21] D. Kinderlehrer and P. Pedregal, Characterization of Young Measures Generated by Gradients. Arch. Rational Mech. Anal. 115 (1991) 329-365. Zbl0754.49020MR1120852
  22. [22] D. Kinderlehrer and P. Pedregal, Gradient Young Measures Generated by Sequences in Sobolev Spaces. J. Geom. Anal. 4 (1994) 59-90. Zbl0808.46046MR1274138
  23. [23] S. Muller, Variational models for microstructure and phase transitions. Calculus of variations and geometric evolution problems. Cetraro (1996) 85-210. Springer, Berlin, Lecture Notes in Math. 1713 (1999). Zbl0968.74050MR1731640
  24. [24] P. Pedregal, Parametrized measures and variational principles. Birkhäuser Verlag, Basel, Progr. in Nonlinear Differential Equations Appl. 30 (1997). Zbl0879.49017MR1452107

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.