Sharp summability for Monge transport density via interpolation
Luigi De Pascale; Aldo Pratelli
ESAIM: Control, Optimisation and Calculus of Variations (2004)
- Volume: 10, Issue: 4, page 549-552
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topPascale, Luigi De, and Pratelli, Aldo. "Sharp summability for Monge transport density via interpolation." ESAIM: Control, Optimisation and Calculus of Variations 10.4 (2004): 549-552. <http://eudml.org/doc/245744>.
@article{Pascale2004,
abstract = {Using some results proved in De Pascale and Pratelli [Calc. Var. Partial Differ. Equ. 14 (2002) 249-274] (and De Pascale et al. [Bull. London Math. Soc. 36 (2004) 383-395]) and a suitable interpolation technique, we show that the transport density relative to an $L^p$ source is also an $L^p$ function for any $1\le p\le +\infty $.},
author = {Pascale, Luigi De, Pratelli, Aldo},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {transport density; interpolation; summability},
language = {eng},
number = {4},
pages = {549-552},
publisher = {EDP-Sciences},
title = {Sharp summability for Monge transport density via interpolation},
url = {http://eudml.org/doc/245744},
volume = {10},
year = {2004},
}
TY - JOUR
AU - Pascale, Luigi De
AU - Pratelli, Aldo
TI - Sharp summability for Monge transport density via interpolation
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2004
PB - EDP-Sciences
VL - 10
IS - 4
SP - 549
EP - 552
AB - Using some results proved in De Pascale and Pratelli [Calc. Var. Partial Differ. Equ. 14 (2002) 249-274] (and De Pascale et al. [Bull. London Math. Soc. 36 (2004) 383-395]) and a suitable interpolation technique, we show that the transport density relative to an $L^p$ source is also an $L^p$ function for any $1\le p\le +\infty $.
LA - eng
KW - transport density; interpolation; summability
UR - http://eudml.org/doc/245744
ER -
References
top- [1] L. Ambrosio, Mathematical Aspects of Evolving Interfaces. Lect. Notes Math. 1812 (2003) 1-52. Zbl1047.35001MR2011032
- [2] L. Ambrosio and A. Pratelli, Existence and stability results in the theory of optimal transportation. Lect. Notes Math. 1813 (2003) 123-160. Zbl1065.49026MR2006307
- [3] G. Bouchitté and G. Buttazzo, Characterization of optimal shapes and masses through Monge-Kantorovich equation. J. Eur. Math. Soc. 3 (2001) 139-168. Zbl0982.49025MR1831873
- [4] G. Bouchitté, G. Buttazzo and P. Seppecher, Shape Optimization Solutions via Monge-Kantorovich Equation. C. R. Acad. Sci. Paris I 324 (1997) 1185-1191. Zbl0884.49023MR1451945
- [5] L. De Pascale, L.C. Evans and A. Pratelli, Integral Estimates for Transport Densities. Bull. London Math. Soc. 36 (2004) 383-395. Zbl1068.35170MR2038726
- [6] L. De Pascale and A. Pratelli, Regularity properties for Monge transport density and for solutions of some shape optimization problem. Calc. Var. Partial Differ. Equ. 14 (2002) 249-274. Zbl1032.49043MR1899447
- [7] L.C. Evans and W. Gangbo, Differential Equations Methods for the Monge-Kantorovich Mass Transfer Problem. Mem. Amer. Math. Soc. 137 (1999). Zbl0920.49004MR1464149
- [8] M. Feldman and R. McCann, Uniqueness and transport density in Monge’s mass transportation problem. Calc. Var. Partial Differ. Equ. 15 (2002) 81-113. Zbl1003.49031
- [9] W. Gangbo and R.J. McCann, The geometry of optimal transportation. Acta Math. 177 (1996) 113-161. Zbl0887.49017MR1440931
- [10] M. Giaquinta, Introduction to regularity theory for nonlinear elliptic systems. Birkhäuser Verlag (1993). Zbl0786.35001MR1239172
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.