Mathematical models for laser-plasma interaction
- Volume: 39, Issue: 2, page 275-318
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topSentis, Rémi. "Mathematical models for laser-plasma interaction." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 39.2 (2005): 275-318. <http://eudml.org/doc/245756>.
@article{Sentis2005,
abstract = {We address here mathematical models related to the Laser-Plasma Interaction. After a simplified introduction to the physical background concerning the modelling of the laser propagation and its interaction with a plasma, we recall some classical results about the geometrical optics in plasmas. Then we deal with the well known paraxial approximation of the solution of the Maxwell equation; we state a coupling model between the plasma hydrodynamics and the laser propagation. Lastly, we consider the coupling with the ion acoustic waves which has to be taken into account to model the so called Brillouin instability. Here, besides the macroscopic density and the velocity of the plasma, one has to handle the space-time envelope of the main laser wave, the space-time envelope of the stimulated Brillouin backscattered laser wave and the space envelope of the Brillouin ion acoustic waves. Numerical methods are also described to deal with the paraxial model and the three-wave coupling system related to the Brillouin instability.},
author = {Sentis, Rémi},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Euler-Maxwell system; numerical plasma simulation; geometrical optics; paraxial approximation; Schrödinger equation; three-wave coupling system; Brillouin instability; Maxwell equation; plasma hydrodynamics; laser propagation},
language = {eng},
number = {2},
pages = {275-318},
publisher = {EDP-Sciences},
title = {Mathematical models for laser-plasma interaction},
url = {http://eudml.org/doc/245756},
volume = {39},
year = {2005},
}
TY - JOUR
AU - Sentis, Rémi
TI - Mathematical models for laser-plasma interaction
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 2
SP - 275
EP - 318
AB - We address here mathematical models related to the Laser-Plasma Interaction. After a simplified introduction to the physical background concerning the modelling of the laser propagation and its interaction with a plasma, we recall some classical results about the geometrical optics in plasmas. Then we deal with the well known paraxial approximation of the solution of the Maxwell equation; we state a coupling model between the plasma hydrodynamics and the laser propagation. Lastly, we consider the coupling with the ion acoustic waves which has to be taken into account to model the so called Brillouin instability. Here, besides the macroscopic density and the velocity of the plasma, one has to handle the space-time envelope of the main laser wave, the space-time envelope of the stimulated Brillouin backscattered laser wave and the space envelope of the Brillouin ion acoustic waves. Numerical methods are also described to deal with the paraxial model and the three-wave coupling system related to the Brillouin instability.
LA - eng
KW - Euler-Maxwell system; numerical plasma simulation; geometrical optics; paraxial approximation; Schrödinger equation; three-wave coupling system; Brillouin instability; Maxwell equation; plasma hydrodynamics; laser propagation
UR - http://eudml.org/doc/245756
ER -
References
top- [1] M.R. Amin, C.E. Capjack, P. Fricz, W. Rozmus and V.T. Tikhonchuk, Two-dimensional studies of stimulated Brillouin scattering, filamentation. Phys. Fluids B 5 (1993) 3748–3764.
- [2] A. Arnold and M. Ehrhardt, Discrete transparent boundary conditions for wide angle parabolic equations. J. Comput. Phys. 145 (1998) 611–638. Zbl0915.76081
- [3] P. Ballereau, M. Casanova, F. Duboc, D. Dureau, H. Jourdren, P. Loiseau, J. Metral, O. Morice and R. Sentis, Coupling hydrodynamics with a paraxial solver for laser propagation. CEA internal report (2005). Zbl1177.82104
- [4] J.D. Benamou, An introduction to Eulerian geometrical optics. J. Sci. Comp. 19 (2003) 63–95. Zbl1042.78001
- [5] J.D. Benamou, F. Castella, T. Katsaounis and B. Perthame, High Frequency limit of the Helmholtz equations. Rev. Mat. Iberoamericana 18 (2002) 187–209. Zbl1090.35165
- [6] J.D. Benamou, O. Lafitte, R. Sentis and I. Solliec, A geometrical optics based numerical method for high frequency electromagnetic fields computations near fold caustics (part I). J. Comput. Appl. Math. 156 (2003) 93–125. Zbl1027.78011
- [7] J.D. Benamou, O. Lafitte, R. Sentis and I. Solliec, A geometrical optics based numerical method for high frequency electromagnetic fields computations near fold caustics (part II, the Energy). J. Comput. Appl. Math. 167 (2004) 91–134. Zbl1054.78003
- [8] J.P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114 (1994) 185–200. Zbl0814.65129
- [9] R.L. Berger, C.H. Still, E.A. Williams and A.B. Langdon, On the dominant subdominant behavior of stimulated Raman and Brillouin scattering. Phys. Plasmas 5 (1998) 4337.
- [10] R.L. Berger et al., Theory and three-dimensional simulation of light filamentation. Phys. Fluids B 5 (1993) 2243.
- [11] C. Besse, N.J. Mauser and H.P. Stimming, Numerical study of the Davey-Stewartson System. ESAIM: M2AN 38 (2004) 1035–1054. Zbl1080.65095
- [12] H. Brezis, F. Golse and R. Sentis, Analyse asymptotique de l’équation de Poisson couplée à la relation de Boltzmann. Quasi-neutralité dans les plasmas. Note C. R. Acad. Sci. Paris Sér. I 321 (1995) 953–959. Zbl0839.76096
- [13] F. Castella, B. Perthame and O. Runborg, High frequency limit of the Helmholtz equations, II. Source on a manifold. Comm. Partial Differential Equations 27 (2002) 607–651. Zbl1290.35262
- [14] F.F. Chen, Introduction to Plasmas Physics. Plenum, New York (1974).
- [15] M. Colin and T. Colin, On a Quasilinear Zakharov system describing Laser-Plasma Interaction. Differential Integral Equations 17 (2004) 297–330. Zbl1174.35528
- [16] M. Colin and T. Colin, Cauchy problem and numerical simulation for a quasi-linear Zakharov system. Accepted for publication in Nonlinear Analysis. Zbl1224.76186
- [17] F. Collino, Perfectly matched absorbing layers for the paraxial equation. J. Comput. Phys. 131 (1997) 164–180. Zbl0866.73013
- [18] A. Decoster, Fluid equations and transport coefficient of plasmas, in Modelling of collisions. P.-A. Raviart Ed., Masson, Paris (1997).
- [19] S. Desroziers, Modelisation de la propagation laser par résolution de l’équation d’Helmholtz, CEA internal report (2005).
- [20] M. Doumic, F. Golse and R. Sentis, Propagation laser paraxiale en coordonnées obliques: équation d’advection-Schrödinger. Note C. R. Acad. Sci. Paris Sér. I 336 (2003) 23–28. Zbl1038.35132
- [21] M. Doumic, F. Duboc, F. Golse and R. Sentis, Numerical simulation for paraxial model of light propagation in a tilted frame: the advection-Schrödinger equation. CEA internal report (2005), preprint. Zbl1156.78321
- [22] M.R. Dorr, F.X. Garaizar and J.A. Hittinger, Simuation of laser-plasma filamentation. J. Comput. Phys. 17 (2002) 233–263. Zbl1045.76024
- [23] V.V. Eliseev, W. Rozmus, V.T. Tikhonchuk and C.E. Capjack, Phys. Plasmas 2 (1996) 2215 and Phys. Plasmas 3 (1996) 3754.
- [24] M.D. Feit and J.A. Fleck, Beam nonparaxiality, filament formation. J. Opt. Soc. Amer. B 5 (1988) 633–640.
- [25] F.G. Friedlander and J.B. Keller, Asymptotic expansion of solutions of Comm. Pure Appl. Math. 5 (1955) 387. Zbl0064.34902MR70833
- [26] S. Hüller, Ph. Mounaix, V.T. Tikhonchuk and D. Pesme, Interaction of two neighboring laser beams. Phys. Plasmas 4 (1997) 2670–2680.
- [27] J.D. Jackson, Classical Electrodynamics. Wiley, New York (1962). Zbl0997.78500MR436782
- [28] H. Jourdren, HERA hydrodynamics AMR Plateform for multiphysics simulation, in Proc. of Chicago workshop on AMR methods (Sept. 2003). Springer Verlag, Berlin (2004). Zbl1309.76157
- [29] J.B. Keller and R.M. Lewis, Asymptotic Methods for P.D.E: The reduced Wave Equation. Research report Courant Inst. (1964); reprinted in Surveys Appl. Math. 1, J.B. Keller, W. McLaughlin, G.C. Papanicolaou, Eds. Plenum, New York (1995). MR1366207
- [30] J.B. Keller and J.S. Papadakis, Eds., Wave Propagation and underwater Accoustics. Springer, Berlin. Lecture Notes in Phys. 70 (1977). Zbl0399.76079MR464871
- [31] Y.A. Krastsov and Y.I. Orlov, Geometric optics for Inhomogeneous Media. Springer, Berlin (1990). MR1113261
- [32] W.L. Kruer, The Physics of Laser-Plasma Interaction. Addison-Wesley, New York (1988).
- [33] D. Lee, A.D. Pierce, E.S. Shang, Parabolic equation development in the twentieth century. J. Comput. Acoust. 8 (2000) 527–637.
- [34] P. Loiseau, O. Morice et al., Laser-beam smoothing induced by stimulated Brillouin scattering. CEA internal report (2005).
- [35] P. Mounaix, D. Pesme and M. Casanova, Nonlinear reflectivity of an inhomogeneous plasma. Phys. Rev. E 55 (1997) 4653–4664.
- [36] J.S. Papadakis, M.I. Taroudakis, P.J. Papadakis and B. Mayfield, A new method for a realistic treatement of the sea bottom in parabolic approximation. J. Acoust. Soc. Amer. 92 (1992) 2030–2038.
- [37] G.C. Papanicolaou, C. Sulem, P.L. Sulem and X.P. Wang, Singular solutions of the Zaharov equations for Langmuir turbulence. Phys. Fluids B 3 (1991) 969–980.
- [38] D. Pesme, Interaction collisionnelle et collective (Chap. 2) in La fusion par Confinement Inertiel I. Interaction laser-matière. R. Dautray-Watteau Ed., Eyrolles, Paris (1995).
- [39] D. Pesme et al., Fluid-type Effects in the nonlinear Stimulated Brillouin Scatter, in Laser-Plasma Interaction Workshop at Wente, L. Divol Ed., Lawrence Livermore Nat. Lab. report UCRL-JC-148983 (2002).
- [40] G. Riazuelo and G. Bonnaud, Coherence properties of a smoothed laser beam in a hot plasma. Phys. Plasmas 7 (2000) 3841.
- [41] H.A. Rose, Laser beam deflection. Phys. Plasmas 3 (1996) 1709–1727.
- [42] Shao et al., Spectral methods simulations of light scattering. IEEE J. Quantum Electronics 37 (2001) 617.
- [43] G. Schurtz, Les codes numériques en FCI (Chap. 13), in La fusion par Confinement Inertiel, III. Techniques exp. et numériques, R. Dautray-Watteau Ed., Eyrolles, Paris (1995).
- [44] W.W. Symes and J. Qian, A slowness matching eulerian method. J. Sci. Comput. 19 (2003) 501–526. Zbl1035.78017
- [45] F.D. Tappert, The parabolic equation approximation method, in Wave Propagation and underwater Accoustics, J.B. Keller and J.S. Papadakis Eds., Springer, Berlin. Lecture Notes in Phys. 70 (1977). MR475274
- [46] V.E. Zakharov, Collapse of Langmuir waves. Sov. Phys. JETP 35 (1972) 908.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.