Characterization of collision kernels

Laurent Desvillettes; Francesco Salvarani

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2003)

  • Volume: 37, Issue: 2, page 345-355
  • ISSN: 0764-583X

Abstract

top
In this paper we show how abstract physical requirements are enough to characterize the classical collision kernels appearing in kinetic equations. In particular Boltzmann and Landau kernels are derived.

How to cite

top

Desvillettes, Laurent, and Salvarani, Francesco. "Characterization of collision kernels." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 37.2 (2003): 345-355. <http://eudml.org/doc/245775>.

@article{Desvillettes2003,
abstract = {In this paper we show how abstract physical requirements are enough to characterize the classical collision kernels appearing in kinetic equations. In particular Boltzmann and Landau kernels are derived.},
author = {Desvillettes, Laurent, Salvarani, Francesco},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Boltzmann; Landau; collision kernels; Boltzmann kernel; Landau kernel},
language = {eng},
number = {2},
pages = {345-355},
publisher = {EDP-Sciences},
title = {Characterization of collision kernels},
url = {http://eudml.org/doc/245775},
volume = {37},
year = {2003},
}

TY - JOUR
AU - Desvillettes, Laurent
AU - Salvarani, Francesco
TI - Characterization of collision kernels
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2003
PB - EDP-Sciences
VL - 37
IS - 2
SP - 345
EP - 355
AB - In this paper we show how abstract physical requirements are enough to characterize the classical collision kernels appearing in kinetic equations. In particular Boltzmann and Landau kernels are derived.
LA - eng
KW - Boltzmann; Landau; collision kernels; Boltzmann kernel; Landau kernel
UR - http://eudml.org/doc/245775
ER -

References

top
  1. [1] R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152 (2000) 327–355. Zbl0968.76076
  2. [2] R. Alexandre and C. Villani, On the Landau approximation in plasma physics. To appear in Ann. I.H.P. An. non linéaire. Zbl1044.83007MR2037247
  3. [3] A.V. Bobylev, The Boltzmann equation and the group transformations. Math. Models Methods Appl. Sci. 3 (1993) 443–476. Zbl0782.35078
  4. [4] C. Cercignani, R. Illner and M. Pulvirenti, The mathematical theory of dilute gases. Springer Verlag, New York (1994). Zbl0813.76001MR1307620
  5. [5] L. Desvillettes, Boltzmann’s kernel and the spatially homogeneous Boltzmann equation. Riv. Mat. Univ. Parma 6 (2001) 1–22. Zbl1078.76059
  6. [6] L. Desvillettes and V. Ricci, A rigorous derivation of a linear kinetic equation of Fokker-Planck type in the limit of grazing collisions. J. Statist. Phys. 104 (2001) 1173–1189. Zbl1051.82022
  7. [7] L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. Part I: Existence, uniqueness and smoothness. Comm. Partial Differential Equations 25 (2000) 179–259. Zbl0946.35109
  8. [8] D. Dürr, S. Goldstein and J. Lebowitz, Asymptotic motion of a classical particle in a random potential in two dimensions: Landau model. Comm. Math. Phys. 113 (1987) 209–230. Zbl0642.60057
  9. [9] G. Gallavotti, Rigorous theory of the Boltzmann equation in the Lorentz gas. Nota interna No. 358, Istituto di Fisica, Università di Roma (1973). 
  10. [10] I.M. Guelfand and N.Y. Vilenkin, Les distributions, Tome IV, Applications de l’analyse harmonique. Dunod, Paris (1967). Zbl0219.46032
  11. [11] L. Hörmander, The analysis of linear partial differential operators I. Springer Verlag, Berlin (1983). Zbl0521.35001
  12. [12] R. Illner and M. Pulvirenti, Global validity of the Boltzmann equation for a two-dimensional rare gas in the vacuum. Comm. Math. Phys. 105 (1986) 189–203. Zbl0609.76083
  13. [13] R. Illner and M. Pulvirenti, Global validity of the Boltzmann equation for two- and three-dimensional rare gas in the vacuum: erratum and improved result. Comm. Math. Phys. 121 (1989) 143–146. Zbl0850.76600
  14. [14] O. Lanford, Time evolution of large classical systems. Springer Verlag, Lecture Notes in Phys. 38 (1975) 1–111. Zbl0329.70011
  15. [15] R.W. Preisendorfer, A mathematical foundation for radiative transfer. J. Math. Mech. 6 (1957) 685–730. Zbl0078.42503

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.