Characterization of collision kernels
Laurent Desvillettes; Francesco Salvarani
- Volume: 37, Issue: 2, page 345-355
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topDesvillettes, Laurent, and Salvarani, Francesco. "Characterization of collision kernels." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 37.2 (2003): 345-355. <http://eudml.org/doc/245775>.
@article{Desvillettes2003,
abstract = {In this paper we show how abstract physical requirements are enough to characterize the classical collision kernels appearing in kinetic equations. In particular Boltzmann and Landau kernels are derived.},
author = {Desvillettes, Laurent, Salvarani, Francesco},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Boltzmann; Landau; collision kernels; Boltzmann kernel; Landau kernel},
language = {eng},
number = {2},
pages = {345-355},
publisher = {EDP-Sciences},
title = {Characterization of collision kernels},
url = {http://eudml.org/doc/245775},
volume = {37},
year = {2003},
}
TY - JOUR
AU - Desvillettes, Laurent
AU - Salvarani, Francesco
TI - Characterization of collision kernels
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2003
PB - EDP-Sciences
VL - 37
IS - 2
SP - 345
EP - 355
AB - In this paper we show how abstract physical requirements are enough to characterize the classical collision kernels appearing in kinetic equations. In particular Boltzmann and Landau kernels are derived.
LA - eng
KW - Boltzmann; Landau; collision kernels; Boltzmann kernel; Landau kernel
UR - http://eudml.org/doc/245775
ER -
References
top- [1] R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152 (2000) 327–355. Zbl0968.76076
- [2] R. Alexandre and C. Villani, On the Landau approximation in plasma physics. To appear in Ann. I.H.P. An. non linéaire. Zbl1044.83007MR2037247
- [3] A.V. Bobylev, The Boltzmann equation and the group transformations. Math. Models Methods Appl. Sci. 3 (1993) 443–476. Zbl0782.35078
- [4] C. Cercignani, R. Illner and M. Pulvirenti, The mathematical theory of dilute gases. Springer Verlag, New York (1994). Zbl0813.76001MR1307620
- [5] L. Desvillettes, Boltzmann’s kernel and the spatially homogeneous Boltzmann equation. Riv. Mat. Univ. Parma 6 (2001) 1–22. Zbl1078.76059
- [6] L. Desvillettes and V. Ricci, A rigorous derivation of a linear kinetic equation of Fokker-Planck type in the limit of grazing collisions. J. Statist. Phys. 104 (2001) 1173–1189. Zbl1051.82022
- [7] L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. Part I: Existence, uniqueness and smoothness. Comm. Partial Differential Equations 25 (2000) 179–259. Zbl0946.35109
- [8] D. Dürr, S. Goldstein and J. Lebowitz, Asymptotic motion of a classical particle in a random potential in two dimensions: Landau model. Comm. Math. Phys. 113 (1987) 209–230. Zbl0642.60057
- [9] G. Gallavotti, Rigorous theory of the Boltzmann equation in the Lorentz gas. Nota interna No. 358, Istituto di Fisica, Università di Roma (1973).
- [10] I.M. Guelfand and N.Y. Vilenkin, Les distributions, Tome IV, Applications de l’analyse harmonique. Dunod, Paris (1967). Zbl0219.46032
- [11] L. Hörmander, The analysis of linear partial differential operators I. Springer Verlag, Berlin (1983). Zbl0521.35001
- [12] R. Illner and M. Pulvirenti, Global validity of the Boltzmann equation for a two-dimensional rare gas in the vacuum. Comm. Math. Phys. 105 (1986) 189–203. Zbl0609.76083
- [13] R. Illner and M. Pulvirenti, Global validity of the Boltzmann equation for two- and three-dimensional rare gas in the vacuum: erratum and improved result. Comm. Math. Phys. 121 (1989) 143–146. Zbl0850.76600
- [14] O. Lanford, Time evolution of large classical systems. Springer Verlag, Lecture Notes in Phys. 38 (1975) 1–111. Zbl0329.70011
- [15] R.W. Preisendorfer, A mathematical foundation for radiative transfer. J. Math. Mech. 6 (1957) 685–730. Zbl0078.42503
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.