Zienkiewicz–Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes

Gerd Kunert; Serge Nicaise[1]

  • [1] Université de Valenciennes et du Hainaut Cambrésis, MACS, Le Mont Houy, 59313 Valenciennes Cedex 9, France. http://www.univ-valenciennes.fr/macs/Serge.Nicaise

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2003)

  • Volume: 37, Issue: 6, page 1013-1043
  • ISSN: 0764-583X

Abstract

top
We consider a posteriori error estimators that can be applied to anisotropic tetrahedral finite element meshes, i.e. meshes where the aspect ratio of the elements can be arbitrarily large. Two kinds of Zienkiewicz–Zhu (ZZ) type error estimators are derived which originate from different backgrounds. In the course of the analysis, the first estimator turns out to be a special case of the second one, and both estimators can be expressed using some recovered gradient. The advantage of keeping two different analyses of the estimators is that they allow different and partially novel investigations and results. Both rigorous analytical approaches yield the equivalence of each ZZ error estimator to a known residual error estimator. Thus reliability and efficiency of the ZZ error estimation is obtained. The anisotropic discretizations require analytical tools beyond the standard isotropic methods. Particular attention is paid to the requirements on the anisotropic mesh. The analysis is complemented and confirmed by extensive numerical examples. They show that good results can be obtained for a large class of problems, demonstrated exemplary for the Poisson problem and a singularly perturbed reaction diffusion problem.

How to cite

top

Kunert, Gerd, and Nicaise, Serge. "Zienkiewicz–Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 37.6 (2003): 1013-1043. <http://eudml.org/doc/245794>.

@article{Kunert2003,
abstract = {We consider a posteriori error estimators that can be applied to anisotropic tetrahedral finite element meshes, i.e. meshes where the aspect ratio of the elements can be arbitrarily large. Two kinds of Zienkiewicz–Zhu (ZZ) type error estimators are derived which originate from different backgrounds. In the course of the analysis, the first estimator turns out to be a special case of the second one, and both estimators can be expressed using some recovered gradient. The advantage of keeping two different analyses of the estimators is that they allow different and partially novel investigations and results. Both rigorous analytical approaches yield the equivalence of each ZZ error estimator to a known residual error estimator. Thus reliability and efficiency of the ZZ error estimation is obtained. The anisotropic discretizations require analytical tools beyond the standard isotropic methods. Particular attention is paid to the requirements on the anisotropic mesh. The analysis is complemented and confirmed by extensive numerical examples. They show that good results can be obtained for a large class of problems, demonstrated exemplary for the Poisson problem and a singularly perturbed reaction diffusion problem.},
affiliation = {Université de Valenciennes et du Hainaut Cambrésis, MACS, Le Mont Houy, 59313 Valenciennes Cedex 9, France. http://www.univ-valenciennes.fr/macs/Serge.Nicaise},
author = {Kunert, Gerd, Nicaise, Serge},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {anisotropic mesh; error estimator; Zienkiewicz–Zhu estimator; recovered gradient; finite element methods; anisotropic meshes; error estimators; mesh refinement; Zienkiewicz-Zhu estimator; elliptic second-order boundary value problems; numerical experiments},
language = {eng},
number = {6},
pages = {1013-1043},
publisher = {EDP-Sciences},
title = {Zienkiewicz–Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes},
url = {http://eudml.org/doc/245794},
volume = {37},
year = {2003},
}

TY - JOUR
AU - Kunert, Gerd
AU - Nicaise, Serge
TI - Zienkiewicz–Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2003
PB - EDP-Sciences
VL - 37
IS - 6
SP - 1013
EP - 1043
AB - We consider a posteriori error estimators that can be applied to anisotropic tetrahedral finite element meshes, i.e. meshes where the aspect ratio of the elements can be arbitrarily large. Two kinds of Zienkiewicz–Zhu (ZZ) type error estimators are derived which originate from different backgrounds. In the course of the analysis, the first estimator turns out to be a special case of the second one, and both estimators can be expressed using some recovered gradient. The advantage of keeping two different analyses of the estimators is that they allow different and partially novel investigations and results. Both rigorous analytical approaches yield the equivalence of each ZZ error estimator to a known residual error estimator. Thus reliability and efficiency of the ZZ error estimation is obtained. The anisotropic discretizations require analytical tools beyond the standard isotropic methods. Particular attention is paid to the requirements on the anisotropic mesh. The analysis is complemented and confirmed by extensive numerical examples. They show that good results can be obtained for a large class of problems, demonstrated exemplary for the Poisson problem and a singularly perturbed reaction diffusion problem.
LA - eng
KW - anisotropic mesh; error estimator; Zienkiewicz–Zhu estimator; recovered gradient; finite element methods; anisotropic meshes; error estimators; mesh refinement; Zienkiewicz-Zhu estimator; elliptic second-order boundary value problems; numerical experiments
UR - http://eudml.org/doc/245794
ER -

References

top
  1. [1] M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis. Wiley (2000). Zbl1008.65076MR1885308
  2. [2] Th. Apel, Anisotropic finite elements: Local estimates and applications, Advances in Numerical Mathematics. Teubner, Stuttgart (1999). Zbl0934.65121MR1716824
  3. [3] I. Babuška, T. Strouboulis and C.S. Upadhyay, A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles. Comput. Methods Appl. Mech. Engrg. 114 (1994) 307–378. 
  4. [4] I. Babuška, T. Strouboulis, C.S. Upadhyay, S.K. Gangaraj and K. Copps, Validation of a posteriori error estimators by numerical approach. Int. J. Numer. Methods Eng. 37 (1994) 1073–1123. Zbl0811.65088
  5. [5] S. Bartels and C. Carstensen, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: High order FEM. Math. Comp. 71 (2002) 971–994. Zbl0997.65127
  6. [6] J.H. Bramble, J.E. Pasciak and O. Steinbach, On the stability of the L 2 -projection in H 1 ( ω ) . Math. Comp. 71 (2002) 147–156. Zbl0989.65122
  7. [7] C. Carstensen, Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H 1 -stability of the L 2 -projection onto finite element spaces. Math. Comp. 71 (2002) 157–163. Zbl0989.65123
  8. [8] C. Carstensen and S. Bartels, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM. Math. Comp. 71 (2002) 945–969. Zbl0997.65126
  9. [9] P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). Zbl0383.65058MR520174
  10. [10] M. Dobrowolski, S. Gräf and C. Pflaum, On a posteriori error estimators in the finite element method on anisotropic meshes. Electron. Trans. Numer. Anal. 8 (1999) 36–45. Zbl0934.65122
  11. [11] G. Kunert, A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes. Logos Verlag, Berlin (1999). Also Ph.D. thesis, TU Chemnitz, http:/ /archiv.tu-chemnitz.de/pub/1999/0012/index.html Zbl0919.65066
  12. [12] G. Kunert, An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes. Numer. Math. 86 (2000) 471–490, DOI 10.1007/s002110000170. Zbl0965.65125
  13. [13] G. Kunert, A local problem error estimator for anisotropic tetrahedral finite element meshes. SIAM J. Numer. Anal. 39 (2001) 668–689. Zbl1004.65112
  14. [14] G. Kunert, A posteriori L 2 error estimation on anisotropic tetrahedral finite element meshes. IMA J. Numer. Anal. 21 (2001) 503–523. Zbl0993.65118
  15. [15] G. Kunert, Robust a posteriori error estimation for a singularly perturbed reaction–diffusion equation on anisotropic tetrahedral meshes. Adv. Comput. Math. 15 (2001) 237–259. Zbl1049.65121
  16. [16] G. Kunert and S. Nicaise, Zienkiewicz–Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes, preprint SFB393/01–20, TU Chemnitz, July 2001. Also http:/ /archiv.tu-chemnitz.de/pub/2001/0059/index.html Zbl1077.65114
  17. [17] G. Kunert and R. Verfürth, Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes. Numer. Math. 86 (2000) 283–303, DOI 10.1007/s002110000152. Zbl0964.65120
  18. [18] L.A. Oganesyan and L.A. Rukhovets, Variational-difference methods for the solution of elliptic equations. Izd. Akad. Nauk Armyanskoi SSR, Jerevan (1979), in Russian. Zbl0357.65088MR584442
  19. [19] G. Raugel, Résolution numérique par une méthode d’éléments finis du problème de Dirichlet pour le Laplacien dans un polygone. C. R. Acad. Sci. Paris, Sér. I Math 286 (1978) A791–A794. Zbl0377.65058
  20. [20] R. Rodriguez, Some remarks on the Zienkiewicz–Zhu estimator. Numer. Meth. PDE 10 (1994) 625–635. Zbl0806.73069
  21. [21] H.G. Roos and T. Linß, Gradient recovery for singularly perturbed boundary value problems II: Two-dimensional convection-diffusion. Math. Models Methods Appl. Sci. 11 (2001) 1169–1179. Zbl1014.65122
  22. [22] K.G. Siebert, An a posteriori error estimator for anisotropic refinement. Numer. Math. 73 (1996) 373–398. Zbl0873.65098
  23. [23] O. Steinbach, On the stability of the L 2 -projection in fractional Sobolev spaces. Numer. Math. 88 (2001) 367–379. Zbl0989.65124
  24. [24] R. Verfürth, A review of a posteriori error estimation and adaptive mesh–refinement techniques. Wiley-Teubner, Chichester, Stuttgart (1996). Zbl0853.65108
  25. [25] Zh. Zhang, Superconvergent finite element method on a Shishkin mesh for convection-diffusion problems. Report 98-006, Texas Tech University (1998). 
  26. [26] O.C. Zienkiewicz and J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis. Internat. J. Numer. Methods Engrg. 24 (1987) 337–357. Zbl0602.73063
  27. [27] O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery (SPR) and adaptive finite element refinement. Comput. Methods Appl. Mech. Engrg. 101 (1992) 207–224. Zbl0779.73078

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.