The topological asymptotic for the Navier-Stokes equations
ESAIM: Control, Optimisation and Calculus of Variations (2005)
- Volume: 11, Issue: 3, page 401-425
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topAmstutz, Samuel. "The topological asymptotic for the Navier-Stokes equations." ESAIM: Control, Optimisation and Calculus of Variations 11.3 (2005): 401-425. <http://eudml.org/doc/245810>.
@article{Amstutz2005,
abstract = {The aim of the topological asymptotic analysis is to provide an asymptotic expansion of a shape functional with respect to the size of a small inclusion inserted inside the domain. The main field of application is shape optimization. This paper addresses the case of the steady-state Navier-Stokes equations for an incompressible fluid and a no-slip condition prescribed on the boundary of an arbitrary shaped obstacle. The two and three dimensional cases are treated for several examples of cost functional and a numerical application is presented.},
author = {Amstutz, Samuel},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {shape optimization; topological asymptotic; Navier-Stokes equations; asymptotic expansion of a shape functional; no-slip condition},
language = {eng},
number = {3},
pages = {401-425},
publisher = {EDP-Sciences},
title = {The topological asymptotic for the Navier-Stokes equations},
url = {http://eudml.org/doc/245810},
volume = {11},
year = {2005},
}
TY - JOUR
AU - Amstutz, Samuel
TI - The topological asymptotic for the Navier-Stokes equations
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2005
PB - EDP-Sciences
VL - 11
IS - 3
SP - 401
EP - 425
AB - The aim of the topological asymptotic analysis is to provide an asymptotic expansion of a shape functional with respect to the size of a small inclusion inserted inside the domain. The main field of application is shape optimization. This paper addresses the case of the steady-state Navier-Stokes equations for an incompressible fluid and a no-slip condition prescribed on the boundary of an arbitrary shaped obstacle. The two and three dimensional cases are treated for several examples of cost functional and a numerical application is presented.
LA - eng
KW - shape optimization; topological asymptotic; Navier-Stokes equations; asymptotic expansion of a shape functional; no-slip condition
UR - http://eudml.org/doc/245810
ER -
References
top- [1] G. Allaire, Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes. Arch. Rational Mech. Anal. 113 (1990) 209–259. Zbl0724.76020
- [2] G. Allaire, Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. II. Noncritical sizes of the holes for a volume distribution and a surface distribution of holes. Arch. Rational Mech. Anal. 113 (1990) 261–298. Zbl0724.76021
- [3] G. Allaire, Shape optimization by the homogenization method. Springer, Appl. Math. Sci. 146 (2002). Zbl0990.35001MR1859696
- [4] S. Amstutz, The topological asymptotic for the Helmholtz equation: insertion of a hole, a crack and a dielectric object. Rapport MIP No. 03–05 (2003).
- [5] M. Bendsoe, Optimal topology design of continuum structure: an introduction. Technical report, Departement of mathematics, Technical University of Denmark, DK2800 Lyngby, Denmark (1996).
- [6] R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Masson, collection CEA 6 (1987). Zbl0642.35001MR918560
- [7] A. Friedman and M.S. Vogelius, Identification of small inhomogeneities of extreme conductivity byboundary measurements: a theorem of continuous dependence. Arch. Rational Mech. Anal. 105 (1989) 299–326. Zbl0684.35087
- [8] G. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Vols. I and II, Springer-Verlag 39 (1994). Zbl0949.35005MR1284205
- [9] S. Garreau, Ph. Guillaume and M. Masmoudi, The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim. 39 (2001) 1756–1778. Zbl0990.49028
- [10] Ph. Guillaume and K. Sid Idris, The topological asymptotic expansion for the Dirichlet problem. SIAM J. Control. Optim. 41 (2002) 1052–1072. Zbl1053.49031
- [11] Ph. Guillaume and K. Sid Idris, Topological sensitivity and shape optimization for the Stokes equations. Rapport MIP No. 01–24 (2001). Zbl1093.49029
- [12] M. Hassine and M. Masmoudi, The topological asymptotic expansion for the quasi-Stokes problem. ESAIM: COCV 10 (2004) 478–504. Zbl1072.49027
- [13] A.M. Il’in, Matching of asymptotic expansions of solutions of boundary value problems. Translations Math. Monographs 102 (1992). Zbl0754.34002
- [14] J. Jacobsen, N. Olhoff and E. Ronholt, Generalized shape optimization of three-dimensionnal structures using materials with optimum microstructures. Technical report, Institute of Mechanical Engineering, Aalborg University, DK-9920 Aalborg, Denmark (1996).
- [15] M. Masmoudi, The Toplogical Asymptotic, Computational Methods for Control Applications, R. Glowinski, H. Kawarada and J. Periaux Eds. GAKUTO Internat. Ser. Math. Sci. Appl. 16 (2001) 53–72. Zbl1082.93584
- [16] V. Mazya, S. Nazarov and B. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Birkhäuser Verlag, Oper. Theory Adv. Appl. 101 (2000). Zbl1127.35301
- [17] S. Nazarov, A. Sequeira and J. Videman, Steady flows of Jeffrey-Hamel type from the half plane into an infinite channel. Linearization on an antisymmetric solution. J. Math. Pures Appl. 80 (2001) 1069–1098. Zbl1042.76013
- [18] S. Nazarov, A. Sequeira and J. Videman, Steady flows of Jeffrey-Hamel type from the half plane into an infinite channel. Linearization on a symmetric solution. J. Math. Pures Appl. 81 (2001) 781–810. Zbl1043.76015
- [19] S. Nazarov and M. Specovius-Neugebauer, Approximation of exterior boundary value problems for the Stokes system. Asymptotic Anal. 14 (1997) 223–255. Zbl0884.35130
- [20] S. Nazarov, M. Specovius-Neugebauer and J. Videman, Nonlinear artificial boundary conditions for the Navier-Stokes equations in an aperture domain. Math. Nachr. 265 (2004) 24–67. Zbl1042.35050
- [21] B. Samet, S. Amstutz and M. Masmoudi, The topological asymptotic for the Helmholtz equation. SIAM J. Control Optim. 42 (2003) 1523–1544. Zbl1051.49029
- [22] B. Samet and J. Pommier, The topological asymptotic for the Helmholtz equation with Dirichlet condition on the boundary of an arbitrary shaped hole. SIAM J. Control Optim. 43 (2004) 899–921. Zbl1080.49028
- [23] A. Schumacher, Topologieoptimisierung von Bauteilstrukturen unter Verwendung von Lopchpositionierungkrieterien. Thesis, Universität-Gesamthochschule-Siegen (1995).
- [24] K. Sid Idris, Sensibilité topologique en optimisation de forme. Thèse de l’INSA Toulouse (2001).
- [25] J. Sokolowski and A. Zochowski, On the topological derivative in shape optimization. SIAM J. Control Optim. 37 (1999) 1241–1272. Zbl0940.49026
- [26] R. Temam, Navier-Stokes equations. Elsevier (1984). Zbl0568.35002MR769654
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.