The mathematical theory of low Mach number flows

Steven Schochet

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2005)

  • Volume: 39, Issue: 3, page 441-458
  • ISSN: 0764-583X

Abstract

top
The mathematical theory of the passage from compressible to incompressible fluid flow is reviewed.

How to cite

top

Schochet, Steven. "The mathematical theory of low Mach number flows." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 39.3 (2005): 441-458. <http://eudml.org/doc/245837>.

@article{Schochet2005,
abstract = {The mathematical theory of the passage from compressible to incompressible fluid flow is reviewed.},
author = {Schochet, Steven},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {incompressible limit; Mach number; compressible flows; asymptotic expansions; multiple scales},
language = {eng},
number = {3},
pages = {441-458},
publisher = {EDP-Sciences},
title = {The mathematical theory of low Mach number flows},
url = {http://eudml.org/doc/245837},
volume = {39},
year = {2005},
}

TY - JOUR
AU - Schochet, Steven
TI - The mathematical theory of low Mach number flows
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 3
SP - 441
EP - 458
AB - The mathematical theory of the passage from compressible to incompressible fluid flow is reviewed.
LA - eng
KW - incompressible limit; Mach number; compressible flows; asymptotic expansions; multiple scales
UR - http://eudml.org/doc/245837
ER -

References

top
  1. [1] T. Alazard, Incompressible limit of the nonisentropic Euler equations with the solid wall boundary conditions. Adv. Differential Equations, to appear. Zbl1101.35050MR2106119
  2. [2] G. Alì, Low Mach number flows in time-dependent domains. SIAM J. Appl. Math. 63 (2003) 2020–2041. Zbl1058.35155
  3. [3] K. Asano, On the incompressible limit of the compressible euler equation. Japan J. Appl. Math. 4 (1987) 455–488. Zbl0638.35012
  4. [4] B.J. Bayly, C.D. Levermore and T. Passot, Density variations in weakly compressible flows. Phys. Fluids A 4 (1992) 945–954. Zbl0756.76061
  5. [5] D. Bresch, B. Desjardins, E. Grenier and C.-K. Lin, Low Mach number limit of viscous polytropic flows: formal asymptotics in the periodic case. Stud. Appl. Math. 109 (2002) 125–149. Zbl1114.76347
  6. [6] G. Browning and H.-O. Kreiss, Problems with different time scales for nonlinear partial differential equations. SIAM J. Appl. Math. 42 (1982) 704–718. Zbl0506.35006
  7. [7] G. Browning, A. Kasahara and H.-O. Kreiss, Initialization of the primitive equations by the bounded derivative method. J. Atmospheric Sci. 37 (1980) 1424–1436. 
  8. [8] C. Cheverry, Justification de l’optique géométrique non linéaire pour un système de lois de conservation. Duke Math. J. 87 (1997) 213–263. Zbl0914.35078
  9. [9] A. Chorin, A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2 (1967) 12–26. Zbl0149.44802
  10. [10] R. Danchin, Zero Mach number limit for compressible flows with periodic boundary conditions. Amer. J. Math. 124 (2002) 1153–1219. Zbl1048.35075
  11. [11] B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999) 2271–2279. Zbl0934.76080
  12. [12] B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic navier-stokes equations with dirichlet boundary conditions. J. Math. Pures Appl. 78 (1999) 461–471. Zbl0992.35067
  13. [13] A. Dutrifoy and T. Hmidi, The incompressible limit of solutions of the two-dimensional compressible Euler system with degenerating initial data. C. R. Math. Acad. Sci. Paris 336 (2003) 471–474. Zbl1044.35044
  14. [14] D. Ebin, The motion of slightly compressible fluids viewed as a motion with strong constraining force. Ann. Math. 105 (1977) 141–200. Zbl0373.76007
  15. [15] D. Ebin, Motion of slightly compressible fluids in a bounded domain I. Comm. Pure Appl. Math. 35 (1982) 451–485. Zbl0478.76011
  16. [16] I. Gallagher, Asymptotic of the solutions of hyperbolic equations with a skew-symmetric perturbation. J. Differential Equations 150 (1998) 363–384. Zbl0921.35095
  17. [17] B. Gustafsson and H. Stoor, Navier-Stokes equations for almost incompressible flow. SIAM J. Numer. Anal. 28 (1991) 1523–1547. Zbl0734.76048
  18. [18] T. Hagstrom and J. Lorenz, All-time existence of classical solutions for slightly compressible flows. SIAM J. Math. Anal. 29 (1998) 652–672. Zbl0907.76073
  19. [19] T. Hagstrom and J. Lorenz, On the stability of approximate solutions of hyperbolic-parabolic systems and the all-time existence of smooth, slightly compressible flows. Indiana Univ. Math. J. 51 (2002) 1339–1387. Zbl1039.35085
  20. [20] D. Hoff, The zero-Mach limit of compressible flows. Comm. Math. Phys. 192 (1998) 543–554. Zbl0907.35098
  21. [21] T. Iguchi, The incompressible limit and the initial layer of the compressible Euler equation in R + n . Math. Methods Appl. Sci. 20 (1997) 945–958. Zbl0884.35127
  22. [22] H. Isozaki, Singular limits for the compressible Euler equation in an exterior domain. J. Reine Angew. Math. 381 (1987) 1–36. Zbl0618.76073
  23. [23] H. Isozaki, Wave operators and the incompressible limit of the compressible Euler equation. Comm. Math. Phys. 110 (1987) 519–524. Zbl0627.76081
  24. [24] H. Isozaki, Singular limits for the compressible Euler equation in an exterior domain. II. Bodies in a uniform flow. Osaka J. Math. 26 (1989) 399–410. Zbl0716.35065
  25. [25] J.-L. Joly, G. Métivier and J. Rauch, Coherent and focusing multidimensional nonlinear geometric optics. Ann. Sci. École Norm. Sup. (4) 28 (1995) 51–113. Zbl0836.35087
  26. [26] J.-L. Joly, G. Métivier and J. Rauch, Dense oscillations for the compressible 2-d Euler equations, in Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XIII (Paris, 1994/1996), Longman, Harlow. Pitman Res. Notes Math. Ser. 391 (1998) 134–166. Zbl0952.35102
  27. [27] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Rational Mech. Anal. 58 (1975) 181–205. Zbl0343.35056
  28. [28] S. Klainerman and A. Majda, Singular perturbations of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm. Pure Appl. Math. 34 (1981) 481–524. Zbl0476.76068
  29. [29] S. Klainerman and A. Majda, Compressible and incompressible fluids. Comm. Pure Appl. Math. 35 (1982) 629–653. Zbl0478.76091
  30. [30] R. Klein, Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics. I. One-dimensional flow. J. Comput. Phys. 121 (1995) 213–237. Zbl0842.76053
  31. [31] R. Klein, N. Botta, T. Schneider, C.-D. Munz, S. Roller, A. Meister, L. Hoffmann and T. Sonar, Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Engrg. Math. 39 (2001) 261–343. Zbl1015.76071
  32. [32] H.-O. Kreiss, Problems with different time scales for partial differential equations. Comm. Pure Appl. Math. 33 (1980) 399–439. Zbl0439.35043
  33. [33] C.K. Lin, On the incompressible limit of the compressible navier-stokes equations. Comm. Partial Differential Equations 20 (1995) 677–707. Zbl0816.35105
  34. [34] P.-L. Lions, Mathematical topics in fluid mechanics, Vol. 1, Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, New York 3 (1996). Zbl0866.76002MR1422251
  35. [35] P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77 (1998) 585–627. Zbl0909.35101
  36. [36] P.-L. Lions and N. Masmoudi, Une approche locale de la limite incompressible. C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 387–392. Zbl0937.35132
  37. [37] A. Meister, Asymptotic single and multiple scale expansions in the low Mach number limit. SIAM J. Appl. Math. 60 (2000) 256–271. Zbl0941.35052
  38. [38] G. Métivier and S. Schochet, The incompressible limit of the non-isentropic euler equations. Arch. Rational Mech. Anal. 158 (2001) 61–90. Zbl0974.76072
  39. [39] G. Métivier and S. Schochet, Averaging theorems for conservative systems and the weakly compressible Euler equations. J. Differential Equations 187 (2003) 106–183. Zbl1029.34035
  40. [40] B. Müller, Low-Mach-number asymptotics of the Navier-Stokes equations. J. Engrg. Math. 34 (1998) 97–109. Zbl0924.76095
  41. [41] M. Schiffer, Analytical theory of subsonic and supersonic flows, in Handbuch der Physik. Springer-Verlag, Berlin 9 (1960) 1–161. 
  42. [42] S. Schochet, The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit. Comm. Math. Phys. 104 (1986) 49–75. Zbl0612.76082
  43. [43] S. Schochet, Asymptotics for symmetric hyperbolic systems with a large parameter. J. Differential Equations 75 (1988) 1–27. Zbl0685.35014
  44. [44] S. Schochet, Fast singular limits of hyperbolic PDEs. J. Differential Equations 114 (1994) 476–512. Zbl0838.35071
  45. [45] P. Secchi, On the singular incompressible limit of inviscid compressible fluids. J. Math. Fluid Mech. 2 (2000) 107–125. Zbl0965.35127
  46. [46] T. Sideris, The lifespan of smooth solutions to the three-dimensional compressible Euler equations and the incompressible limit. Indiana Univ. Math J. 40 (1991) 535–550. Zbl0736.35087
  47. [47] L. Sirovich, Initial and boundary value problems in dissipative gas dynamics. Phys. Fluids 10 (1967) 24–34. Zbl0145.46503
  48. [48] R. Temam, Navier-Stokes equations. Theory and numerical analysis. North-Holland Publishing Co., Amsterdam (1977). Zbl0383.35057MR609732
  49. [49] S. Ukai, The incompressible limit and initial layer of the compressible Euler equation. J. Math. Kyoto U. 26 (1986) 323–331. Zbl0618.76074
  50. [50] P.S. van der Gulik, The linear pressure dependence of the viscosity at high densities. Physica A 256 (1998) 39–56. 
  51. [51] M. Van Dyke, Perturbation methods in fluid mechanics. Appl. Math. Mech. 8. Academic Press, New York (1964). Zbl0136.45001MR176702
  52. [52] G.P. Zank and W.H. Matthaeus, The equations of nearly incompressible fluids. I. Hydrodynamics, turbulence, and waves. Phys. Fluids A 3 (1991) 69–82. Zbl0718.76049

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.