The mathematical theory of low Mach number flows
- Volume: 39, Issue: 3, page 441-458
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topSchochet, Steven. "The mathematical theory of low Mach number flows." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 39.3 (2005): 441-458. <http://eudml.org/doc/245837>.
@article{Schochet2005,
abstract = {The mathematical theory of the passage from compressible to incompressible fluid flow is reviewed.},
author = {Schochet, Steven},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {incompressible limit; Mach number; compressible flows; asymptotic expansions; multiple scales},
language = {eng},
number = {3},
pages = {441-458},
publisher = {EDP-Sciences},
title = {The mathematical theory of low Mach number flows},
url = {http://eudml.org/doc/245837},
volume = {39},
year = {2005},
}
TY - JOUR
AU - Schochet, Steven
TI - The mathematical theory of low Mach number flows
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 3
SP - 441
EP - 458
AB - The mathematical theory of the passage from compressible to incompressible fluid flow is reviewed.
LA - eng
KW - incompressible limit; Mach number; compressible flows; asymptotic expansions; multiple scales
UR - http://eudml.org/doc/245837
ER -
References
top- [1] T. Alazard, Incompressible limit of the nonisentropic Euler equations with the solid wall boundary conditions. Adv. Differential Equations, to appear. Zbl1101.35050MR2106119
- [2] G. Alì, Low Mach number flows in time-dependent domains. SIAM J. Appl. Math. 63 (2003) 2020–2041. Zbl1058.35155
- [3] K. Asano, On the incompressible limit of the compressible euler equation. Japan J. Appl. Math. 4 (1987) 455–488. Zbl0638.35012
- [4] B.J. Bayly, C.D. Levermore and T. Passot, Density variations in weakly compressible flows. Phys. Fluids A 4 (1992) 945–954. Zbl0756.76061
- [5] D. Bresch, B. Desjardins, E. Grenier and C.-K. Lin, Low Mach number limit of viscous polytropic flows: formal asymptotics in the periodic case. Stud. Appl. Math. 109 (2002) 125–149. Zbl1114.76347
- [6] G. Browning and H.-O. Kreiss, Problems with different time scales for nonlinear partial differential equations. SIAM J. Appl. Math. 42 (1982) 704–718. Zbl0506.35006
- [7] G. Browning, A. Kasahara and H.-O. Kreiss, Initialization of the primitive equations by the bounded derivative method. J. Atmospheric Sci. 37 (1980) 1424–1436.
- [8] C. Cheverry, Justification de l’optique géométrique non linéaire pour un système de lois de conservation. Duke Math. J. 87 (1997) 213–263. Zbl0914.35078
- [9] A. Chorin, A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2 (1967) 12–26. Zbl0149.44802
- [10] R. Danchin, Zero Mach number limit for compressible flows with periodic boundary conditions. Amer. J. Math. 124 (2002) 1153–1219. Zbl1048.35075
- [11] B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999) 2271–2279. Zbl0934.76080
- [12] B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic navier-stokes equations with dirichlet boundary conditions. J. Math. Pures Appl. 78 (1999) 461–471. Zbl0992.35067
- [13] A. Dutrifoy and T. Hmidi, The incompressible limit of solutions of the two-dimensional compressible Euler system with degenerating initial data. C. R. Math. Acad. Sci. Paris 336 (2003) 471–474. Zbl1044.35044
- [14] D. Ebin, The motion of slightly compressible fluids viewed as a motion with strong constraining force. Ann. Math. 105 (1977) 141–200. Zbl0373.76007
- [15] D. Ebin, Motion of slightly compressible fluids in a bounded domain I. Comm. Pure Appl. Math. 35 (1982) 451–485. Zbl0478.76011
- [16] I. Gallagher, Asymptotic of the solutions of hyperbolic equations with a skew-symmetric perturbation. J. Differential Equations 150 (1998) 363–384. Zbl0921.35095
- [17] B. Gustafsson and H. Stoor, Navier-Stokes equations for almost incompressible flow. SIAM J. Numer. Anal. 28 (1991) 1523–1547. Zbl0734.76048
- [18] T. Hagstrom and J. Lorenz, All-time existence of classical solutions for slightly compressible flows. SIAM J. Math. Anal. 29 (1998) 652–672. Zbl0907.76073
- [19] T. Hagstrom and J. Lorenz, On the stability of approximate solutions of hyperbolic-parabolic systems and the all-time existence of smooth, slightly compressible flows. Indiana Univ. Math. J. 51 (2002) 1339–1387. Zbl1039.35085
- [20] D. Hoff, The zero-Mach limit of compressible flows. Comm. Math. Phys. 192 (1998) 543–554. Zbl0907.35098
- [21] T. Iguchi, The incompressible limit and the initial layer of the compressible Euler equation in . Math. Methods Appl. Sci. 20 (1997) 945–958. Zbl0884.35127
- [22] H. Isozaki, Singular limits for the compressible Euler equation in an exterior domain. J. Reine Angew. Math. 381 (1987) 1–36. Zbl0618.76073
- [23] H. Isozaki, Wave operators and the incompressible limit of the compressible Euler equation. Comm. Math. Phys. 110 (1987) 519–524. Zbl0627.76081
- [24] H. Isozaki, Singular limits for the compressible Euler equation in an exterior domain. II. Bodies in a uniform flow. Osaka J. Math. 26 (1989) 399–410. Zbl0716.35065
- [25] J.-L. Joly, G. Métivier and J. Rauch, Coherent and focusing multidimensional nonlinear geometric optics. Ann. Sci. École Norm. Sup. (4) 28 (1995) 51–113. Zbl0836.35087
- [26] J.-L. Joly, G. Métivier and J. Rauch, Dense oscillations for the compressible 2-d Euler equations, in Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XIII (Paris, 1994/1996), Longman, Harlow. Pitman Res. Notes Math. Ser. 391 (1998) 134–166. Zbl0952.35102
- [27] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Rational Mech. Anal. 58 (1975) 181–205. Zbl0343.35056
- [28] S. Klainerman and A. Majda, Singular perturbations of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm. Pure Appl. Math. 34 (1981) 481–524. Zbl0476.76068
- [29] S. Klainerman and A. Majda, Compressible and incompressible fluids. Comm. Pure Appl. Math. 35 (1982) 629–653. Zbl0478.76091
- [30] R. Klein, Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics. I. One-dimensional flow. J. Comput. Phys. 121 (1995) 213–237. Zbl0842.76053
- [31] R. Klein, N. Botta, T. Schneider, C.-D. Munz, S. Roller, A. Meister, L. Hoffmann and T. Sonar, Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Engrg. Math. 39 (2001) 261–343. Zbl1015.76071
- [32] H.-O. Kreiss, Problems with different time scales for partial differential equations. Comm. Pure Appl. Math. 33 (1980) 399–439. Zbl0439.35043
- [33] C.K. Lin, On the incompressible limit of the compressible navier-stokes equations. Comm. Partial Differential Equations 20 (1995) 677–707. Zbl0816.35105
- [34] P.-L. Lions, Mathematical topics in fluid mechanics, Vol. 1, Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, New York 3 (1996). Zbl0866.76002MR1422251
- [35] P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77 (1998) 585–627. Zbl0909.35101
- [36] P.-L. Lions and N. Masmoudi, Une approche locale de la limite incompressible. C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 387–392. Zbl0937.35132
- [37] A. Meister, Asymptotic single and multiple scale expansions in the low Mach number limit. SIAM J. Appl. Math. 60 (2000) 256–271. Zbl0941.35052
- [38] G. Métivier and S. Schochet, The incompressible limit of the non-isentropic euler equations. Arch. Rational Mech. Anal. 158 (2001) 61–90. Zbl0974.76072
- [39] G. Métivier and S. Schochet, Averaging theorems for conservative systems and the weakly compressible Euler equations. J. Differential Equations 187 (2003) 106–183. Zbl1029.34035
- [40] B. Müller, Low-Mach-number asymptotics of the Navier-Stokes equations. J. Engrg. Math. 34 (1998) 97–109. Zbl0924.76095
- [41] M. Schiffer, Analytical theory of subsonic and supersonic flows, in Handbuch der Physik. Springer-Verlag, Berlin 9 (1960) 1–161.
- [42] S. Schochet, The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit. Comm. Math. Phys. 104 (1986) 49–75. Zbl0612.76082
- [43] S. Schochet, Asymptotics for symmetric hyperbolic systems with a large parameter. J. Differential Equations 75 (1988) 1–27. Zbl0685.35014
- [44] S. Schochet, Fast singular limits of hyperbolic PDEs. J. Differential Equations 114 (1994) 476–512. Zbl0838.35071
- [45] P. Secchi, On the singular incompressible limit of inviscid compressible fluids. J. Math. Fluid Mech. 2 (2000) 107–125. Zbl0965.35127
- [46] T. Sideris, The lifespan of smooth solutions to the three-dimensional compressible Euler equations and the incompressible limit. Indiana Univ. Math J. 40 (1991) 535–550. Zbl0736.35087
- [47] L. Sirovich, Initial and boundary value problems in dissipative gas dynamics. Phys. Fluids 10 (1967) 24–34. Zbl0145.46503
- [48] R. Temam, Navier-Stokes equations. Theory and numerical analysis. North-Holland Publishing Co., Amsterdam (1977). Zbl0383.35057MR609732
- [49] S. Ukai, The incompressible limit and initial layer of the compressible Euler equation. J. Math. Kyoto U. 26 (1986) 323–331. Zbl0618.76074
- [50] P.S. van der Gulik, The linear pressure dependence of the viscosity at high densities. Physica A 256 (1998) 39–56.
- [51] M. Van Dyke, Perturbation methods in fluid mechanics. Appl. Math. Mech. 8. Academic Press, New York (1964). Zbl0136.45001MR176702
- [52] G.P. Zank and W.H. Matthaeus, The equations of nearly incompressible fluids. I. Hydrodynamics, turbulence, and waves. Phys. Fluids A 3 (1991) 69–82. Zbl0718.76049
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.