Alentours de la limite incompressible
- [1] MAB, Université de Bordeaux I, 33405 Talence
Séminaire Équations aux dérivées partielles (2004-2005)
- page 1-16
Access Full Article
topAbstract
topHow to cite
topReferences
top- T. Alazard, Incompressible limit of the nonisentropic Euler equations with solid wall boundary conditions, Adv. in Differential Equations10, 19–44 (2005). Zbl1101.35050MR2106119
- T. Alazard, Low Mach number limit of the full Navier–Stokes equations, Arch. Ration. Mech. Anal, accepté. Zbl1108.76061MR2211706
- T. Alazard, Low Mach number limit of the full Navier–Stokes equations II, en cours. Zbl1108.76061
- S. Benzoni-Gavage, R. Danchin & S. Descombes, Well-posedness of one-dimensional Korteweg models, prépublication. Zbl1114.76058
- D. Bresch & B. Desjardins, Existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids. Zbl1122.35092
- D. Bresch, B. Desjardins & D. Gerard–Varet, Rotating Fluids in a cylinder, Disc. Cont. Dyn. Sys.- Series A 1, 47–82 (2004). Zbl1138.76446MR2073946
- D. Bresch, B. Desjardins, E. Grenier & C.-K. Lin, Low Mach number limit of viscous polytropic flows : formal asymptotics in the periodic case, Stud. Appl. Math.109, 125–149 (2002). Zbl1114.76347MR1917042
- D. Bresch, D. Gerard-Varet & E. Grenier, Derivation of the planetary geostrophic equations, prépublication. Zbl1104.76081
- C. Cheverry, Propagation of oscillations in real vanishing viscosity limit, Comm. Math. Phys., 247, 655–695 (2004). Zbl1079.35060MR2062647
- R. Danchin, Zero Mach number limit for compressible flows with periodic boundary conditions, Amer. J. Math.124, 1153–1219 (2002). Zbl1048.35075MR1939784
- R. Danchin, Zero Mach number limit in critical spaces for compressible Navier-Stokes equations, Ann. Sci. École Norm. Sup.35, 27–75 (2002). Zbl1048.35054MR1886005
- R. Danchin, Global existence in critical spaces for flows of compressible viscous and heat-conductive gases, Arch. Ration. Mech. Anal., 160, 1–39 (2001). Zbl1018.76037MR1864120
- R. Danchin, Low Mach number limit for viscous compressible flows, M2AN Math. Model. Numer. Anal. specail issue ol. 39 No. 3 (May-June 2005). Zbl1080.35067MR2157145
- B. Desjardins & E. Grenier, Low Mach number limit of viscous compressible flows in the whole space, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.455, 2271–2279 (1999). Zbl0934.76080MR1702718
- B. Desjardins, E. Grenier, P.-L. Lions & N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl.78, 461–471 (1999). Zbl0992.35067MR1697038
- A. Dutrifoy & T. Hmidi, The incompressible limit of solutions of the two-dimensional compressible Euler system with degenerating initial data, Comm. Pure Appl. Math., 57 1159–1177 (2004). Zbl1059.35095MR2059677
- I. Gallagher, A remark on smooth solutions of the weakly compressible periodic Navier–Stokes equations, J. Math. Kyoto Univ., 40 525–540 (2000). Zbl0997.35050MR1794519
- I. Gallagher, Résultats récents sur la limite incompressible, Séminaire Bourbaki2003–2004, num. 926. Zbl1329.76292MR2167201
- I. Gallagher & L. Saint-Raymond, On pressureless gases driven by a strong inhomogeneous magnetic field, SIAM Journal for Mathematical Analysis, accepté. Zbl1145.35095
- E. Grenier, Oscillatory perturbations of the Navier-Stokes equations, J. Math. Pures Appl.76, 477–498 (1997). Zbl0885.35090MR1465607
- H. Isozaki, Singular limits for the compressible Euler equation in an exterior domain, J. Reine Angew. Math.381, 1–36 (1987). Zbl0618.76073MR918838
- H. Isozaki, Wave operators and the incompressible limit of the compressible Euler equation Comm. Math. Phys., 110, 519–524 (1987). Zbl0627.76081MR891951
- S. Kawashima & Y. Shizuta, On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws, Tohoku Math. J. 40 449–464 (1988). Zbl0699.35171MR957056
- S. Klainerman & A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math.34, 481–524 (1981). Zbl0476.76068MR615627
- S. Klainerman & A. Majda, Compressible and incompressible fluids, Comm. Pure Appl. Math.35, 629–651 (1982). Zbl0478.76091MR668409
- P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 1, Incompressible models, Oxford Science Publications (1996). Zbl0866.76002MR1422251
- P.-L. Lions & N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl. (9)77, 585–627 (1998). Zbl0909.35101MR1628173
- P.-L. Lions & N. Masmoudi, Une approche locale de la limite incompressible, C. R. Acad. Sci. Paris Sér. I Math.329, 387–392 (1999). Zbl0937.35132MR1710123
- A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences 53, Springer-Verlag (1984). Zbl0537.76001MR748308
- M. Majdoub & M. Paicu, Uniform local existence for inhomogenous rotating fluid equations, prépublication. Zbl1160.76052
- G. Métivier & S. Schochet, The incompressible limit of the non-isentropic Euler equations, Arch. Ration. Mech. Anal.158, 61–90 (2001). Zbl0974.76072MR1834114
- G. Métivier & S. Schochet, Limite incompressible des équations d’Euler non isentropiques, Séminaire : Équations aux Dérivées Partielles 2000–2001. Zbl1061.76074
- G. Métivier & S. Schochet, Averaging theorems for conservative systems and the weakly compressible Euler equations, J. Differential Equations187, 106–183 (2003). Zbl1029.34035MR1946548
- S. Schochet, The compressible Euler equations in a bounded domain : existence of solutions and the incompressible limit, Comm. Math. Phys.104, 49–75 (1986). Zbl0612.76082MR834481
- S. Schochet, Fast singular limits of hyperbolic PDE’s, J. Differential Equations114, 476–512 (1994). Zbl0838.35071
- S. Schochet, The mathematical theory of low Mach numbers flows, M2AN Math. Model. Numer. Anal. specail issue ol. 39 No. 3 (May-June 2005). Zbl1094.35094MR2157144
- P. Secchi, On slightly compressible ideal flow in the half-plane, Arch. Ration. Mech. Anal., 161, 231–255 (2002). Zbl1026.76040MR1894592