Alentours de la limite incompressible
- [1] MAB, Université de Bordeaux I, 33405 Talence
Séminaire Équations aux dérivées partielles (2004-2005)
- page 1-16
Access Full Article
topAbstract
topHow to cite
topAlazard, Thomas. "Alentours de la limite incompressible." Séminaire Équations aux dérivées partielles (2004-2005): 1-16. <http://eudml.org/doc/11113>.
@article{Alazard2004-2005,
abstract = {Le résultat principal de cet exposé énonce que le problème de Cauchy pour les équations adimensionnées d’un fluide général est bien posé sur un intervalle de temps indépendant des nombres de Mach, Reynolds et Péclet.},
affiliation = {MAB, Université de Bordeaux I, 33405 Talence},
author = {Alazard, Thomas},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-16},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Alentours de la limite incompressible},
url = {http://eudml.org/doc/11113},
year = {2004-2005},
}
TY - JOUR
AU - Alazard, Thomas
TI - Alentours de la limite incompressible
JO - Séminaire Équations aux dérivées partielles
PY - 2004-2005
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 16
AB - Le résultat principal de cet exposé énonce que le problème de Cauchy pour les équations adimensionnées d’un fluide général est bien posé sur un intervalle de temps indépendant des nombres de Mach, Reynolds et Péclet.
LA - fre
UR - http://eudml.org/doc/11113
ER -
References
top- T. Alazard, Incompressible limit of the nonisentropic Euler equations with solid wall boundary conditions, Adv. in Differential Equations10, 19–44 (2005). Zbl1101.35050MR2106119
- T. Alazard, Low Mach number limit of the full Navier–Stokes equations, Arch. Ration. Mech. Anal, accepté. Zbl1108.76061MR2211706
- T. Alazard, Low Mach number limit of the full Navier–Stokes equations II, en cours. Zbl1108.76061
- S. Benzoni-Gavage, R. Danchin & S. Descombes, Well-posedness of one-dimensional Korteweg models, prépublication. Zbl1114.76058
- D. Bresch & B. Desjardins, Existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids. Zbl1122.35092
- D. Bresch, B. Desjardins & D. Gerard–Varet, Rotating Fluids in a cylinder, Disc. Cont. Dyn. Sys.- Series A 1, 47–82 (2004). Zbl1138.76446MR2073946
- D. Bresch, B. Desjardins, E. Grenier & C.-K. Lin, Low Mach number limit of viscous polytropic flows : formal asymptotics in the periodic case, Stud. Appl. Math.109, 125–149 (2002). Zbl1114.76347MR1917042
- D. Bresch, D. Gerard-Varet & E. Grenier, Derivation of the planetary geostrophic equations, prépublication. Zbl1104.76081
- C. Cheverry, Propagation of oscillations in real vanishing viscosity limit, Comm. Math. Phys., 247, 655–695 (2004). Zbl1079.35060MR2062647
- R. Danchin, Zero Mach number limit for compressible flows with periodic boundary conditions, Amer. J. Math.124, 1153–1219 (2002). Zbl1048.35075MR1939784
- R. Danchin, Zero Mach number limit in critical spaces for compressible Navier-Stokes equations, Ann. Sci. École Norm. Sup.35, 27–75 (2002). Zbl1048.35054MR1886005
- R. Danchin, Global existence in critical spaces for flows of compressible viscous and heat-conductive gases, Arch. Ration. Mech. Anal., 160, 1–39 (2001). Zbl1018.76037MR1864120
- R. Danchin, Low Mach number limit for viscous compressible flows, M2AN Math. Model. Numer. Anal. specail issue ol. 39 No. 3 (May-June 2005). Zbl1080.35067MR2157145
- B. Desjardins & E. Grenier, Low Mach number limit of viscous compressible flows in the whole space, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.455, 2271–2279 (1999). Zbl0934.76080MR1702718
- B. Desjardins, E. Grenier, P.-L. Lions & N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl.78, 461–471 (1999). Zbl0992.35067MR1697038
- A. Dutrifoy & T. Hmidi, The incompressible limit of solutions of the two-dimensional compressible Euler system with degenerating initial data, Comm. Pure Appl. Math., 57 1159–1177 (2004). Zbl1059.35095MR2059677
- I. Gallagher, A remark on smooth solutions of the weakly compressible periodic Navier–Stokes equations, J. Math. Kyoto Univ., 40 525–540 (2000). Zbl0997.35050MR1794519
- I. Gallagher, Résultats récents sur la limite incompressible, Séminaire Bourbaki2003–2004, num. 926. Zbl1329.76292MR2167201
- I. Gallagher & L. Saint-Raymond, On pressureless gases driven by a strong inhomogeneous magnetic field, SIAM Journal for Mathematical Analysis, accepté. Zbl1145.35095
- E. Grenier, Oscillatory perturbations of the Navier-Stokes equations, J. Math. Pures Appl.76, 477–498 (1997). Zbl0885.35090MR1465607
- H. Isozaki, Singular limits for the compressible Euler equation in an exterior domain, J. Reine Angew. Math.381, 1–36 (1987). Zbl0618.76073MR918838
- H. Isozaki, Wave operators and the incompressible limit of the compressible Euler equation Comm. Math. Phys., 110, 519–524 (1987). Zbl0627.76081MR891951
- S. Kawashima & Y. Shizuta, On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws, Tohoku Math. J. 40 449–464 (1988). Zbl0699.35171MR957056
- S. Klainerman & A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math.34, 481–524 (1981). Zbl0476.76068MR615627
- S. Klainerman & A. Majda, Compressible and incompressible fluids, Comm. Pure Appl. Math.35, 629–651 (1982). Zbl0478.76091MR668409
- P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 1, Incompressible models, Oxford Science Publications (1996). Zbl0866.76002MR1422251
- P.-L. Lions & N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl. (9)77, 585–627 (1998). Zbl0909.35101MR1628173
- P.-L. Lions & N. Masmoudi, Une approche locale de la limite incompressible, C. R. Acad. Sci. Paris Sér. I Math.329, 387–392 (1999). Zbl0937.35132MR1710123
- A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences 53, Springer-Verlag (1984). Zbl0537.76001MR748308
- M. Majdoub & M. Paicu, Uniform local existence for inhomogenous rotating fluid equations, prépublication. Zbl1160.76052
- G. Métivier & S. Schochet, The incompressible limit of the non-isentropic Euler equations, Arch. Ration. Mech. Anal.158, 61–90 (2001). Zbl0974.76072MR1834114
- G. Métivier & S. Schochet, Limite incompressible des équations d’Euler non isentropiques, Séminaire : Équations aux Dérivées Partielles 2000–2001. Zbl1061.76074
- G. Métivier & S. Schochet, Averaging theorems for conservative systems and the weakly compressible Euler equations, J. Differential Equations187, 106–183 (2003). Zbl1029.34035MR1946548
- S. Schochet, The compressible Euler equations in a bounded domain : existence of solutions and the incompressible limit, Comm. Math. Phys.104, 49–75 (1986). Zbl0612.76082MR834481
- S. Schochet, Fast singular limits of hyperbolic PDE’s, J. Differential Equations114, 476–512 (1994). Zbl0838.35071
- S. Schochet, The mathematical theory of low Mach numbers flows, M2AN Math. Model. Numer. Anal. specail issue ol. 39 No. 3 (May-June 2005). Zbl1094.35094MR2157144
- P. Secchi, On slightly compressible ideal flow in the half-plane, Arch. Ration. Mech. Anal., 161, 231–255 (2002). Zbl1026.76040MR1894592
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.