Alentours de la limite incompressible

Thomas Alazard[1]

  • [1] MAB, Université de Bordeaux I, 33405 Talence

Séminaire Équations aux dérivées partielles (2004-2005)

  • page 1-16

Abstract

top
Le résultat principal de cet exposé énonce que le problème de Cauchy pour les équations adimensionnées d’un fluide général est bien posé sur un intervalle de temps indépendant des nombres de Mach, Reynolds et Péclet.

How to cite

top

Alazard, Thomas. "Alentours de la limite incompressible." Séminaire Équations aux dérivées partielles (2004-2005): 1-16. <http://eudml.org/doc/11113>.

@article{Alazard2004-2005,
abstract = {Le résultat principal de cet exposé énonce que le problème de Cauchy pour les équations adimensionnées d’un fluide général est bien posé sur un intervalle de temps indépendant des nombres de Mach, Reynolds et Péclet.},
affiliation = {MAB, Université de Bordeaux I, 33405 Talence},
author = {Alazard, Thomas},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-16},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Alentours de la limite incompressible},
url = {http://eudml.org/doc/11113},
year = {2004-2005},
}

TY - JOUR
AU - Alazard, Thomas
TI - Alentours de la limite incompressible
JO - Séminaire Équations aux dérivées partielles
PY - 2004-2005
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 16
AB - Le résultat principal de cet exposé énonce que le problème de Cauchy pour les équations adimensionnées d’un fluide général est bien posé sur un intervalle de temps indépendant des nombres de Mach, Reynolds et Péclet.
LA - fre
UR - http://eudml.org/doc/11113
ER -

References

top
  1. T. Alazard, Incompressible limit of the nonisentropic Euler equations with solid wall boundary conditions, Adv. in Differential Equations10, 19–44 (2005). Zbl1101.35050MR2106119
  2. T. Alazard, Low Mach number limit of the full Navier–Stokes equations, Arch. Ration. Mech. Anal, accepté. Zbl1108.76061MR2211706
  3. T. Alazard, Low Mach number limit of the full Navier–Stokes equations II, en cours. Zbl1108.76061
  4. S. Benzoni-Gavage, R. Danchin & S. Descombes, Well-posedness of one-dimensional Korteweg models, prépublication. Zbl1114.76058
  5. D. Bresch & B. Desjardins, Existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids. Zbl1122.35092
  6. D. Bresch, B. Desjardins & D. Gerard–Varet, Rotating Fluids in a cylinder, Disc. Cont. Dyn. Sys.- Series A 1, 47–82 (2004). Zbl1138.76446MR2073946
  7. D. Bresch, B. Desjardins, E. Grenier & C.-K. Lin, Low Mach number limit of viscous polytropic flows : formal asymptotics in the periodic case, Stud. Appl. Math.109, 125–149 (2002). Zbl1114.76347MR1917042
  8. D. Bresch, D. Gerard-Varet & E. Grenier, Derivation of the planetary geostrophic equations, prépublication. Zbl1104.76081
  9. C. Cheverry, Propagation of oscillations in real vanishing viscosity limit, Comm. Math. Phys., 247, 655–695 (2004). Zbl1079.35060MR2062647
  10. R. Danchin, Zero Mach number limit for compressible flows with periodic boundary conditions, Amer. J. Math.124, 1153–1219 (2002). Zbl1048.35075MR1939784
  11. R. Danchin, Zero Mach number limit in critical spaces for compressible Navier-Stokes equations, Ann. Sci. École Norm. Sup.35, 27–75 (2002). Zbl1048.35054MR1886005
  12. R. Danchin, Global existence in critical spaces for flows of compressible viscous and heat-conductive gases, Arch. Ration. Mech. Anal., 160, 1–39 (2001). Zbl1018.76037MR1864120
  13. R. Danchin, Low Mach number limit for viscous compressible flows, M2AN Math. Model. Numer. Anal. specail issue ol. 39 No. 3 (May-June 2005). Zbl1080.35067MR2157145
  14. B. Desjardins & E. Grenier, Low Mach number limit of viscous compressible flows in the whole space, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.455, 2271–2279 (1999). Zbl0934.76080MR1702718
  15. B. Desjardins, E. Grenier, P.-L. Lions & N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl.78, 461–471 (1999). Zbl0992.35067MR1697038
  16. A. Dutrifoy & T. Hmidi, The incompressible limit of solutions of the two-dimensional compressible Euler system with degenerating initial data, Comm. Pure Appl. Math., 57 1159–1177 (2004). Zbl1059.35095MR2059677
  17. I. Gallagher, A remark on smooth solutions of the weakly compressible periodic Navier–Stokes equations, J. Math. Kyoto Univ., 40 525–540 (2000). Zbl0997.35050MR1794519
  18. I. Gallagher, Résultats récents sur la limite incompressible, Séminaire Bourbaki2003–2004, num. 926. Zbl1329.76292MR2167201
  19. I. Gallagher & L. Saint-Raymond, On pressureless gases driven by a strong inhomogeneous magnetic field, SIAM Journal for Mathematical Analysis, accepté. Zbl1145.35095
  20. E. Grenier, Oscillatory perturbations of the Navier-Stokes equations, J. Math. Pures Appl.76, 477–498 (1997). Zbl0885.35090MR1465607
  21. H. Isozaki, Singular limits for the compressible Euler equation in an exterior domain, J. Reine Angew. Math.381, 1–36 (1987). Zbl0618.76073MR918838
  22. H. Isozaki, Wave operators and the incompressible limit of the compressible Euler equation Comm. Math. Phys., 110, 519–524 (1987). Zbl0627.76081MR891951
  23. S. Kawashima & Y. Shizuta, On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws, Tohoku Math. J. 40 449–464 (1988). Zbl0699.35171MR957056
  24. S. Klainerman & A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math.34, 481–524 (1981). Zbl0476.76068MR615627
  25. S. Klainerman & A. Majda, Compressible and incompressible fluids, Comm. Pure Appl. Math.35, 629–651 (1982). Zbl0478.76091MR668409
  26. P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 1, Incompressible models, Oxford Science Publications (1996). Zbl0866.76002MR1422251
  27. P.-L. Lions & N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl. (9)77, 585–627 (1998). Zbl0909.35101MR1628173
  28. P.-L. Lions & N. Masmoudi, Une approche locale de la limite incompressible, C. R. Acad. Sci. Paris Sér. I Math.329, 387–392 (1999). Zbl0937.35132MR1710123
  29. A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences 53, Springer-Verlag (1984). Zbl0537.76001MR748308
  30. M. Majdoub & M. Paicu, Uniform local existence for inhomogenous rotating fluid equations, prépublication. Zbl1160.76052
  31. G. Métivier & S. Schochet, The incompressible limit of the non-isentropic Euler equations, Arch. Ration. Mech. Anal.158, 61–90 (2001). Zbl0974.76072MR1834114
  32. G. Métivier & S. Schochet, Limite incompressible des équations d’Euler non isentropiques, Séminaire : Équations aux Dérivées Partielles 2000–2001. Zbl1061.76074
  33. G. Métivier & S. Schochet, Averaging theorems for conservative systems and the weakly compressible Euler equations, J. Differential Equations187, 106–183 (2003). Zbl1029.34035MR1946548
  34. S. Schochet, The compressible Euler equations in a bounded domain : existence of solutions and the incompressible limit, Comm. Math. Phys.104, 49–75 (1986). Zbl0612.76082MR834481
  35. S. Schochet, Fast singular limits of hyperbolic PDE’s, J. Differential Equations114, 476–512 (1994). Zbl0838.35071
  36. S. Schochet, The mathematical theory of low Mach numbers flows, M2AN Math. Model. Numer. Anal. specail issue ol. 39 No. 3 (May-June 2005). Zbl1094.35094MR2157144
  37. P. Secchi, On slightly compressible ideal flow in the half-plane, Arch. Ration. Mech. Anal., 161, 231–255 (2002). Zbl1026.76040MR1894592

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.