Fourier approach to homogenization problems

Carlos Conca; M. Vanninathan

ESAIM: Control, Optimisation and Calculus of Variations (2002)

  • Volume: 8, page 489-511
  • ISSN: 1292-8119

Abstract

top
This article is divided into two chapters. The classical problem of homogenization of elliptic operators with periodically oscillating coefficients is revisited in the first chapter. Following a Fourier approach, we discuss some of the basic issues of the subject: main convergence theorem, Bloch approximation, estimates on second order derivatives, correctors for the medium, and so on. The second chapter is devoted to the discussion of some non-classical behaviour of vibration problems of periodic structures.

How to cite

top

Conca, Carlos, and Vanninathan, M.. "Fourier approach to homogenization problems." ESAIM: Control, Optimisation and Calculus of Variations 8 (2002): 489-511. <http://eudml.org/doc/245915>.

@article{Conca2002,
abstract = {This article is divided into two chapters. The classical problem of homogenization of elliptic operators with periodically oscillating coefficients is revisited in the first chapter. Following a Fourier approach, we discuss some of the basic issues of the subject: main convergence theorem, Bloch approximation, estimates on second order derivatives, correctors for the medium, and so on. The second chapter is devoted to the discussion of some non-classical behaviour of vibration problems of periodic structures.},
author = {Conca, Carlos, Vanninathan, M.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {homogenization; Bloch waves; correctors; regularity; spectral problems; vibration problems; elliptic operators},
language = {eng},
pages = {489-511},
publisher = {EDP-Sciences},
title = {Fourier approach to homogenization problems},
url = {http://eudml.org/doc/245915},
volume = {8},
year = {2002},
}

TY - JOUR
AU - Conca, Carlos
AU - Vanninathan, M.
TI - Fourier approach to homogenization problems
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 8
SP - 489
EP - 511
AB - This article is divided into two chapters. The classical problem of homogenization of elliptic operators with periodically oscillating coefficients is revisited in the first chapter. Following a Fourier approach, we discuss some of the basic issues of the subject: main convergence theorem, Bloch approximation, estimates on second order derivatives, correctors for the medium, and so on. The second chapter is devoted to the discussion of some non-classical behaviour of vibration problems of periodic structures.
LA - eng
KW - homogenization; Bloch waves; correctors; regularity; spectral problems; vibration problems; elliptic operators
UR - http://eudml.org/doc/245915
ER -

References

top
  1. [1] F. Aguirre and C. Conca, Eigenfrequencies of a tube bundle immersed in a fluid. Appl. Math. Optim. 18 (1988) 1-38. Zbl0663.76003MR928208
  2. [2] G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518. Zbl0770.35005MR1185639
  3. [3] G. Allaire and C. Conca, Bloch-wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl. 77 (1998) 153-208. Zbl0901.35005MR1614641
  4. [4] G. Allaire and C. Conca, Boundary layers in the homogenization of a spectral problem in fluid-solid structures. SIAM J. Math. Anal. 29 (1997) 343-379. Zbl0918.35018MR1616495
  5. [5] G. Allaire and C. Conca, Bloch wave homogenization for a spectral problem in fluid-solid structures. Arch. Rational Mech. Anal. 135 (1996) 197-257. Zbl0857.73008MR1418465
  6. [6] G. Allaire and C. Conca, Analyse asymptotique spectrale de l’équation des ondes. Homogénéisation par ondes de Bloch. C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 293-298. Zbl0844.35075
  7. [7] G. Allaire and C. Conca, Analyse asymptotique spectrale de l’équation des ondes. Complétude du spectre de Bloch. C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 557-562. Zbl0844.35076
  8. [8] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis in Periodic Structures. North-Holland, Amsterdam (1978). Zbl0404.35001MR503330
  9. [9] F. Bloch, Über die Quantenmechanik der Electronen in Kristallgittern. Z. Phys. 52 (1928) 555-600. Zbl54.0990.01JFM54.0990.01
  10. [10] L. Boccardo and P. Marcellini, Sulla convergenza delle soluzioni di disequazioni variazionali. Ann. Mat. Pura Appl. 4 (1977) 137-159. Zbl0333.35030MR425344
  11. [11] C. Castro and E. Zuazua, Une remarque sur l’analyse asymptotique spectrale en homogénéisation. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996) 1043-1048. Zbl0863.35011
  12. [12] A. Cherkaev and R. Kohn, Topics in the Mathematical Modelling of Composite Materials. Birkhäuser, Boston (1997). Zbl0870.00018MR1493036
  13. [13] C. Conca, S. Natesan and M. Vanninathan, Numerical experiments with the Bloch-Floquet approach in homogenization (to appear). Zbl1121.65119MR2199541
  14. [14] C. Conca, R. Orive and M. Vanninathan, Bloch Approximation in Homogenization and Applications. SIAM J. Math. Anal. (in press). Zbl1010.35004MR1897707
  15. [15] C. Conca, R. Orive and M. Vanninathan, Bloch Approximation in bounded domains. Preprint (2002). Zbl1077.35017MR1897707
  16. [16] C. Conca, R. Orive and M. Vanninathan, Application of Bloch decomposition in wave propagation problems (in preparation). Zbl1077.35017
  17. [17] C. Conca, J. Planchard and M. Vanninathan, Fluids and Periodic Structures. J. Wiley and Sons/Masson, New York/Paris, Collection RAM 38 (1995). Zbl0910.76002MR1652238
  18. [18] C. Conca, J. Planchard and M. Vanninathan, Limiting behaviour of a spectral problem in fluid-solid structures. Asymp. Anal. 6 (1993) 365-389. Zbl0806.35133MR1203625
  19. [19] C. Conca, J. Planchard, B. Thomas and M. Vanninathan, Problèmes Mathématiques en Couplage Fluide-Structure. Applications aux Faisceaux Tubulaires. Eyrolles, Paris (1994). Zbl0824.73002
  20. [20] C. Conca and M. Vanninathan, Homogenization of periodic structures via Bloch decomposition. SIAM J. Appl. Math. 57 (1997) 1639-1659. Zbl0990.35019MR1484944
  21. [21] C. Conca and M. Vanninathan, On uniform H 2 -estimates in periodic homogenization. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 499-517. Zbl1005.35014MR1838500
  22. [22] C. Conca and M. Vanninathan, A spectral problem arising in fluid-solid structures. Comput. Methods Appl. Mech. Engrg. 69 (1988) 215-242. Zbl0669.73071MR949516
  23. [23] G. Dal Maso, An Introduction to Γ - Convergence. Birkhäuser, Boston (1993). Zbl0816.49001MR1201152
  24. [24] A. Figotin and P. Kuchment, Band-gap structure of spectra of periodic dielectric and accoustic media. I, scalar model. SIAM J. Appl. Math. 56 (1996) 68-88. Zbl0852.35014MR1372891
  25. [25] G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques. Ann. École Norm. Sér. 2 12 (1883) 47-89. MR1508722JFM15.0279.01
  26. [26] I.M. Gelfand, Expansion in series of eigenfunctions of an equation with periodic coefficients. Dokl. Akad. Nauk SSSR 73 (1950) 1117-1120. MR39154
  27. [27] P. Gérard, Mesures semi-classiques et ondes de Bloch, in Séminaire Equations aux Dérivées Partielles, Vol. 16, 1990–1991. École Polytechnique, Palaiseau (1991). Zbl0739.35096
  28. [28] P. Gérard, Microlocal defect measures. Comm. Partial Differential Equation 16 (1991) 1761-1794. Zbl0770.35001MR1135919
  29. [29] P. Gérard, P.A. Markowich, N.J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms. Comm. Pure. Appl. Math. 50 (1997) 321-377. Zbl0881.35099MR1438151
  30. [30] L. Hörmander, Analysis of Linear Partial Differential Operators III. Springer-Verlag, Berlin (1985). Zbl0601.35001MR781536
  31. [31] S. Kesavan, Homogenization of elliptic eigenvalue problems, I and II. Appl. Math. Optim. 5 (1979) 153-167, 197-216. Zbl0428.35062MR533617
  32. [32] P.L. Lions and T. Paul, Sur les mesures de Wigner. Revista Math. Iberoamer. 9 (1993) 553-618. Zbl0801.35117MR1251718
  33. [33] P.A. Markowich, N.J. Mauser and F. Poupaud, A Wigner function approach to semiclassical limits: electrons in a periodic potential. J. Math. Phys. 35 (1994) 1066-1094. Zbl0805.35106MR1262733
  34. [34] R. Morgan and I. Babuška, An approach for constructing families of homogenized equations for periodic media I and II. SIAM J. Math. Anal. 2 (1991) 1-15, 16-33. Zbl0729.35010
  35. [35] F. Murat, (1977-78) H -Convergence, Séminaire d’Analyse Fonctionnelle et Numérique de l’Université d’Alger, mimeographed notes. English translation: Murat and L. Tartar, H -Convergence, in F. Topics in the Mathematical Modelling of Composite Materials, edited by A. Cherkaev and R. Kohn. Birkhäuser Verlag, Boston. Series Progress in Nonlinear Differential Equations and their Applications 31 (1977). Zbl0920.35019
  36. [36] F. Murat, A survey on compensated compactness, in Contributions to Modern Calculus of Variations, edited by L. Cesari, Pitman Res. Notes in Math. Ser. 148 (1987) 145-183. MR894077
  37. [37] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608-623. Zbl0688.35007MR990867
  38. [38] F. Odeh and J.B. Keller, Partial differential equations with periodic coefficients and Bloch waves in crystals. J. Math. Phys. 5 (1964) 1499-1504. Zbl0129.46004MR168924
  39. [39] O.A. Oleinik, A.S. Shamaev and G.A. Yosifian, On the limiting behaviour of a sequence of operators defined in different Hilbert’s spaces. Upsekhi Math. Nauk. 44 (1989) 157-158. Zbl0711.47003
  40. [40] J. Planchard, Global behaviour of large elastic tube-bundles immersed in a fluid. Comput. Mech. 2 (1987) 105-118. Zbl0635.73070
  41. [41] J. Planchard, Eigenfrequencies of a tube-bundle placed in a confined fluid. Comput. Methods Appl. Mech. Engrg. 30 (1982) 75-93. Zbl0483.70016MR659568
  42. [42] M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, II. Fourier Analysis and Self-Adjointness, III. Scattering Theory, IV. Analysis of Operators. Academic Press, New York (1972-78). Zbl0242.46001MR493419
  43. [43] E. Sánchez–Palencia, Non-Homogeneous Media and Vibration Theory. Springer-Verlag, Berlin. Lecture Notes in Phys. 127 (1980). Zbl0432.70002
  44. [44] J. Sánchez–Hubert and E. Sánchez–Palencia, Vibration and Coupling of Continuous Systems. Asymptotic Methods. Springer-Verlag, Berlin (1989). Zbl0698.70003
  45. [45] F. Santosa and W.W. Symes, A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math. 51 (1991) 984-1005. Zbl0741.73017MR1117428
  46. [46] L. Tartar, H -measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A 115 (1990) 193-230. Zbl0774.35008MR1069518
  47. [47] L. Tartar, Problèmes d’Homogénéisation dans les Equations aux Dérivées Partielles, Cours Peccot au Collège de France (1977). Partially written in F. Murat [25]. 
  48. [48] M. Vanninathan, Homogenization and eigenvalue problems in perforated domains. Proc. Indian Acad. Sci. Math. Sci. 90 (1981) 239-271. Zbl0486.35063MR635561
  49. [49] C. Wilcox, Theory of Bloch waves. J. Anal. Math. 33 (1978) 146-167. Zbl0408.35067MR516045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.