A -convergence result for variational integrators of lagrangians with quadratic growth
Francesco Maggi; Massimiliano Morini
ESAIM: Control, Optimisation and Calculus of Variations (2004)
- Volume: 10, Issue: 4, page 656-665
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topMaggi, Francesco, and Morini, Massimiliano. "A $\Gamma $-convergence result for variational integrators of lagrangians with quadratic growth." ESAIM: Control, Optimisation and Calculus of Variations 10.4 (2004): 656-665. <http://eudml.org/doc/245923>.
@article{Maggi2004,
abstract = {Following the $\Gamma $-convergence approach introduced by Müller and Ortiz, the convergence of discrete dynamics for lagrangians with quadratic behavior is established.},
author = {Maggi, Francesco, Morini, Massimiliano},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {discrete dynamics; variational integrators; gamma-convergence},
language = {eng},
number = {4},
pages = {656-665},
publisher = {EDP-Sciences},
title = {A $\Gamma $-convergence result for variational integrators of lagrangians with quadratic growth},
url = {http://eudml.org/doc/245923},
volume = {10},
year = {2004},
}
TY - JOUR
AU - Maggi, Francesco
AU - Morini, Massimiliano
TI - A $\Gamma $-convergence result for variational integrators of lagrangians with quadratic growth
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2004
PB - EDP-Sciences
VL - 10
IS - 4
SP - 656
EP - 665
AB - Following the $\Gamma $-convergence approach introduced by Müller and Ortiz, the convergence of discrete dynamics for lagrangians with quadratic behavior is established.
LA - eng
KW - discrete dynamics; variational integrators; gamma-convergence
UR - http://eudml.org/doc/245923
ER -
References
top- [1] E. De Giorgi, Teoremi di semicontinuitá nel Calcolo delle Variazioni. Istituto Nazionale di Alta Matematica (1968-1969).
- [2] A.D. Ioffe, On lower semicontinuity of integral functionals. I. SIAM J. Control Optim. 15 (1977) 521-538. Zbl0361.46037MR637234
- [3] E.J. Marsden and M. West, Discrete Mechanics and variational integrators. Acta Numerica 10 (2001) 357-514. Zbl1123.37327MR2009697
- [4] S. Müller and M. Ortiz, On the -convergence of discrete dynamics and variational integrators. J. Nonlinear Sci. 14 (2004) 279-296. Zbl1136.37350MR2061537
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.