Episturmian morphisms and a Galois theorem on continued fractions

Jacques Justin

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2005)

  • Volume: 39, Issue: 1, page 207-215
  • ISSN: 0988-3754

Abstract

top
We associate with a word w on a finite alphabet A an episturmian (or Arnoux-Rauzy) morphism and a palindrome. We study their relations with the similar ones for the reversal of w . Then when | A | = 2 we deduce, using the sturmian words that are the fixed points of the two morphisms, a proof of a Galois theorem on purely periodic continued fractions whose periods are the reversal of each other.

How to cite

top

Justin, Jacques. "Episturmian morphisms and a Galois theorem on continued fractions." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 39.1 (2005): 207-215. <http://eudml.org/doc/245952>.

@article{Justin2005,
abstract = {We associate with a word $w$ on a finite alphabet $A$ an episturmian (or Arnoux-Rauzy) morphism and a palindrome. We study their relations with the similar ones for the reversal of $w$. Then when $|A|=2$ we deduce, using the sturmian words that are the fixed points of the two morphisms, a proof of a Galois theorem on purely periodic continued fractions whose periods are the reversal of each other.},
author = {Justin, Jacques},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {episturmian morphism; Arnoux-Rauzy morphism; palindrome; continued fraction; sturmian word; Episturmian morphism; Sturmian word.},
language = {eng},
number = {1},
pages = {207-215},
publisher = {EDP-Sciences},
title = {Episturmian morphisms and a Galois theorem on continued fractions},
url = {http://eudml.org/doc/245952},
volume = {39},
year = {2005},
}

TY - JOUR
AU - Justin, Jacques
TI - Episturmian morphisms and a Galois theorem on continued fractions
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 1
SP - 207
EP - 215
AB - We associate with a word $w$ on a finite alphabet $A$ an episturmian (or Arnoux-Rauzy) morphism and a palindrome. We study their relations with the similar ones for the reversal of $w$. Then when $|A|=2$ we deduce, using the sturmian words that are the fixed points of the two morphisms, a proof of a Galois theorem on purely periodic continued fractions whose periods are the reversal of each other.
LA - eng
KW - episturmian morphism; Arnoux-Rauzy morphism; palindrome; continued fraction; sturmian word; Episturmian morphism; Sturmian word.
UR - http://eudml.org/doc/245952
ER -

References

top
  1. [1] C. Allauzen, Une caractérisation simple des nombres de Sturm. J. Th. Nombres Bordeaux 10 (1998) 237–241. Zbl0930.11051
  2. [2] P. Arnoux and G. Rauzy, Représentation géometrique de suites de complexité 2 n + 1 . Bull. Soc. Math. France 119 (1991) 199–215. Zbl0789.28011
  3. [3] J. Berstel, Recent results on extensions of Sturmian words. Internat. J. Algebra Comput. 12 (2002) 371–385. Zbl1007.68141
  4. [4] V. Berthé, Autour du système de numération d’Ostrowski. Bull. Belg. Math. Soc. 8 (2001) 209–239. Zbl0994.68100
  5. [5] E. Cahen, Théorie des Nombres. Tome 2, Librairie Scient. A. Hermann, Paris (1924). Zbl45.1257.03JFM45.1257.03
  6. [6] A. Carpi and A. de Luca, Harmonic and Gold Sturmian Words, preprint, Dipart. di Mat. G. Castelnuovo, Università degli Studi di Roma La Sapienza, 22/2003 (2003). Zbl1048.05002MR2081350
  7. [7] M.G. Castelli, F. Mignosi and A. Restivo, Fine and Wilf’s theorem for three periods and a generalization of Sturmian words. Theor. Comput. Sci. 218 (2001) 83–94. Zbl0916.68114
  8. [8] X. Droubay, J. Justin and G. Pirillo, Episturmian words and some constructions of de Luca and Rauzy. Theor. Comput. Sci. 255 (2001) 539–553. Zbl0981.68126
  9. [9] E. Galois, Démonstration d’un théorème sur les fractions continues périodiques. Ann. Math. Pures Appl. de M. Gergonne 19 (1829) 294–301. 
  10. [10] J. Justin, On a paper by Castelli, Mignosi, Restivo. Theor. Inform. Appl. 34 (2000) 373–377. Zbl0987.68056
  11. [11] J. Justin and G. Pirillo, Episturmian words and episturmian morphisms. Theor. Comput. Sci. 276 (2002) 281–313. Zbl1002.68116
  12. [12] J. Justin and G. Pirillo, Episturmian words: shifts, morphisms and numeration systems. Intern. J. Foundat. Comput. Sci. 15 (2004) 329–348. Zbl1067.68115
  13. [13] M. Lothaire, Algebraic Combinatorics on Words, edited by M. Lothaire. Cambridge University Press. Encyclopedia of Mathematics 90 (2002). Zbl1001.68093MR1905123
  14. [14] F. Mignosi and L.Q. Zamboni, On the number of Arnoux-Rauzy words. Acta Arith. 101 (2002) 121–129. Zbl1005.68117
  15. [15] M. Morse and G.A. Hedlund, Symbolic dynamics II: Sturmian trajectories. Amer. J. Math. 62 (1940) 1–42. Zbl0022.34003JFM66.0188.03
  16. [16] G. Rauzy, Nombres algébriques et substitutions. Bull. Soc. Math. France 110 (1982) 147–178. Zbl0522.10032
  17. [17] G. Rauzy, Mots infinis en arithmétique, in Automata on infinite words, edited by M. Nivat and D. Perrin. Lect. Notes Comput. Sci. 192 (1985) 165–171. Zbl0613.10044
  18. [18] R.N. Risley and L.Q. Zamboni, A generalization of Sturmian sequences, combinatorial structure and transcendence. Acta Arithmetica 95 (2000) 167–184. Zbl0953.11007
  19. [19] N.N. Wozny and L.Q. Zamboni, Frequencies of factors in Arnoux-Rauzy sequences. Acta Arithmetica 96 (2001) 261–278. Zbl0973.11030
  20. [20] L.Q. Zamboni, Une généralisation du théorème de Lagrange sur le développement en fraction continue. C. R. Acad. Sci. Paris I 327 (1998) 527–530. Zbl1039.11500

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.