Episturmian morphisms and a Galois theorem on continued fractions
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2005)
- Volume: 39, Issue: 1, page 207-215
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topJustin, Jacques. "Episturmian morphisms and a Galois theorem on continued fractions." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 39.1 (2005): 207-215. <http://eudml.org/doc/245952>.
@article{Justin2005,
abstract = {We associate with a word $w$ on a finite alphabet $A$ an episturmian (or Arnoux-Rauzy) morphism and a palindrome. We study their relations with the similar ones for the reversal of $w$. Then when $|A|=2$ we deduce, using the sturmian words that are the fixed points of the two morphisms, a proof of a Galois theorem on purely periodic continued fractions whose periods are the reversal of each other.},
author = {Justin, Jacques},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {episturmian morphism; Arnoux-Rauzy morphism; palindrome; continued fraction; sturmian word; Episturmian morphism; Sturmian word.},
language = {eng},
number = {1},
pages = {207-215},
publisher = {EDP-Sciences},
title = {Episturmian morphisms and a Galois theorem on continued fractions},
url = {http://eudml.org/doc/245952},
volume = {39},
year = {2005},
}
TY - JOUR
AU - Justin, Jacques
TI - Episturmian morphisms and a Galois theorem on continued fractions
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 1
SP - 207
EP - 215
AB - We associate with a word $w$ on a finite alphabet $A$ an episturmian (or Arnoux-Rauzy) morphism and a palindrome. We study their relations with the similar ones for the reversal of $w$. Then when $|A|=2$ we deduce, using the sturmian words that are the fixed points of the two morphisms, a proof of a Galois theorem on purely periodic continued fractions whose periods are the reversal of each other.
LA - eng
KW - episturmian morphism; Arnoux-Rauzy morphism; palindrome; continued fraction; sturmian word; Episturmian morphism; Sturmian word.
UR - http://eudml.org/doc/245952
ER -
References
top- [1] C. Allauzen, Une caractérisation simple des nombres de Sturm. J. Th. Nombres Bordeaux 10 (1998) 237–241. Zbl0930.11051
- [2] P. Arnoux and G. Rauzy, Représentation géometrique de suites de complexité . Bull. Soc. Math. France 119 (1991) 199–215. Zbl0789.28011
- [3] J. Berstel, Recent results on extensions of Sturmian words. Internat. J. Algebra Comput. 12 (2002) 371–385. Zbl1007.68141
- [4] V. Berthé, Autour du système de numération d’Ostrowski. Bull. Belg. Math. Soc. 8 (2001) 209–239. Zbl0994.68100
- [5] E. Cahen, Théorie des Nombres. Tome 2, Librairie Scient. A. Hermann, Paris (1924). Zbl45.1257.03JFM45.1257.03
- [6] A. Carpi and A. de Luca, Harmonic and Gold Sturmian Words, preprint, Dipart. di Mat. G. Castelnuovo, Università degli Studi di Roma La Sapienza, 22/2003 (2003). Zbl1048.05002MR2081350
- [7] M.G. Castelli, F. Mignosi and A. Restivo, Fine and Wilf’s theorem for three periods and a generalization of Sturmian words. Theor. Comput. Sci. 218 (2001) 83–94. Zbl0916.68114
- [8] X. Droubay, J. Justin and G. Pirillo, Episturmian words and some constructions of de Luca and Rauzy. Theor. Comput. Sci. 255 (2001) 539–553. Zbl0981.68126
- [9] E. Galois, Démonstration d’un théorème sur les fractions continues périodiques. Ann. Math. Pures Appl. de M. Gergonne 19 (1829) 294–301.
- [10] J. Justin, On a paper by Castelli, Mignosi, Restivo. Theor. Inform. Appl. 34 (2000) 373–377. Zbl0987.68056
- [11] J. Justin and G. Pirillo, Episturmian words and episturmian morphisms. Theor. Comput. Sci. 276 (2002) 281–313. Zbl1002.68116
- [12] J. Justin and G. Pirillo, Episturmian words: shifts, morphisms and numeration systems. Intern. J. Foundat. Comput. Sci. 15 (2004) 329–348. Zbl1067.68115
- [13] M. Lothaire, Algebraic Combinatorics on Words, edited by M. Lothaire. Cambridge University Press. Encyclopedia of Mathematics 90 (2002). Zbl1001.68093MR1905123
- [14] F. Mignosi and L.Q. Zamboni, On the number of Arnoux-Rauzy words. Acta Arith. 101 (2002) 121–129. Zbl1005.68117
- [15] M. Morse and G.A. Hedlund, Symbolic dynamics II: Sturmian trajectories. Amer. J. Math. 62 (1940) 1–42. Zbl0022.34003JFM66.0188.03
- [16] G. Rauzy, Nombres algébriques et substitutions. Bull. Soc. Math. France 110 (1982) 147–178. Zbl0522.10032
- [17] G. Rauzy, Mots infinis en arithmétique, in Automata on infinite words, edited by M. Nivat and D. Perrin. Lect. Notes Comput. Sci. 192 (1985) 165–171. Zbl0613.10044
- [18] R.N. Risley and L.Q. Zamboni, A generalization of Sturmian sequences, combinatorial structure and transcendence. Acta Arithmetica 95 (2000) 167–184. Zbl0953.11007
- [19] N.N. Wozny and L.Q. Zamboni, Frequencies of factors in Arnoux-Rauzy sequences. Acta Arithmetica 96 (2001) 261–278. Zbl0973.11030
- [20] L.Q. Zamboni, Une généralisation du théorème de Lagrange sur le développement en fraction continue. C. R. Acad. Sci. Paris I 327 (1998) 527–530. Zbl1039.11500
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.