Isoparametric mixed finite element approximation of eigenvalues and eigenvectors of 4th order eigenvalue problems with variable coefficients

Pulin Kumar Bhattacharyya; Neela Nataraj

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2002)

  • Volume: 36, Issue: 1, page 1-32
  • ISSN: 0764-583X

Abstract

top
Estimates for the combined effect of boundary approximation and numerical integration on the approximation of (simple) eigenvalues and eigenvectors of 4th order eigenvalue problems with variable/constant coefficients in convex domains with curved boundary by an isoparametric mixed finite element method, which, in the particular case of bending problems of aniso-/ortho-/isotropic plates with variable/constant thickness, gives a simultaneous approximation to bending moment tensor field Ψ = ( ψ i j ) 1 i , j 2 and displacement field ‘u’, have been developed.

How to cite

top

Bhattacharyya, Pulin Kumar, and Nataraj, Neela. "Isoparametric mixed finite element approximation of eigenvalues and eigenvectors of 4th order eigenvalue problems with variable coefficients." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 36.1 (2002): 1-32. <http://eudml.org/doc/245988>.

@article{Bhattacharyya2002,
abstract = {Estimates for the combined effect of boundary approximation and numerical integration on the approximation of (simple) eigenvalues and eigenvectors of 4th order eigenvalue problems with variable/constant coefficients in convex domains with curved boundary by an isoparametric mixed finite element method, which, in the particular case of bending problems of aniso-/ortho-/isotropic plates with variable/constant thickness, gives a simultaneous approximation to bending moment tensor field $\Psi = (\psi _\{ij\})_\{1 \le i,j \le 2\}$ and displacement field ‘u’, have been developed.},
author = {Bhattacharyya, Pulin Kumar, Nataraj, Neela},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {mixed FEM; eigenvalue problem; isoparametric boundary approximation; 4th-order equations; anisotropic plates; convergence analysis; numerical results},
language = {eng},
number = {1},
pages = {1-32},
publisher = {EDP-Sciences},
title = {Isoparametric mixed finite element approximation of eigenvalues and eigenvectors of 4th order eigenvalue problems with variable coefficients},
url = {http://eudml.org/doc/245988},
volume = {36},
year = {2002},
}

TY - JOUR
AU - Bhattacharyya, Pulin Kumar
AU - Nataraj, Neela
TI - Isoparametric mixed finite element approximation of eigenvalues and eigenvectors of 4th order eigenvalue problems with variable coefficients
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2002
PB - EDP-Sciences
VL - 36
IS - 1
SP - 1
EP - 32
AB - Estimates for the combined effect of boundary approximation and numerical integration on the approximation of (simple) eigenvalues and eigenvectors of 4th order eigenvalue problems with variable/constant coefficients in convex domains with curved boundary by an isoparametric mixed finite element method, which, in the particular case of bending problems of aniso-/ortho-/isotropic plates with variable/constant thickness, gives a simultaneous approximation to bending moment tensor field $\Psi = (\psi _{ij})_{1 \le i,j \le 2}$ and displacement field ‘u’, have been developed.
LA - eng
KW - mixed FEM; eigenvalue problem; isoparametric boundary approximation; 4th-order equations; anisotropic plates; convergence analysis; numerical results
UR - http://eudml.org/doc/245988
ER -

References

top
  1. [1] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). Zbl0314.46030MR450957
  2. [2] I. Babuška and J.E. Osborn, Eigenvalue Problems, in Handbook of Numerical Analysis. Vol. II, P.G. Ciarlet and J.-L. Lions, Eds., in Finite Element Methods (Part 1), North-Holland Publishing Company, Amsterdam, New York, Oxford (1991) 641–787. Zbl0875.65087
  3. [3] S. Balasundaram and P.K. Bhattacharyya, On existence of solution of the Dirichlet problem of fourth-order partial differential equations with variable coefficients. Quart. Appl. Math. 39 (1983) 311–317. Zbl0533.35024
  4. [4] S. Balasundaram and P.K. Bhattacharyya, A mixed finite element method for fourth-order elliptic equations with variable coefficients. Comput. Math. Appl. 10 (1984) 245–256. Zbl0553.65080
  5. [5] U. Banerjee, A note on the effect of numerical quadrature in finite element eigenvalue approximation. Numer. Math. 61 (1992) 145–152. Zbl0748.65078
  6. [6] U. Banerjee and J.E. Osborn, Estimates of the effect of numerical integration in finite element eigenvalue approximation. Numer. Math. 56 (1990) 735–762. Zbl0693.65071
  7. [7] M. Bernadou, Méthodes numériques pour les problèmes elliptiques, in Méthodes de Mathématiques Appliquées, Vol. 1, Chap. XI, C.E.A., France (1981). 
  8. [8] P.K. Bhattacharyya and N. Nataraj, Isoparametric Mixed Finite Element Approximation of Eigenvalues and Eigenvectors of 4th-Order Eigenvalue Problems with Variable Coefficients. Research Report No. R 98021, Laboratoire d’ Analyse Numérique, Université de Paris VI (1998). Zbl0993.35031
  9. [9] P.K. Bhattacharyya and N. Nataraj, On Combined Effect of Boundary Approximation and Numerical Integration on Mixed Finite Element Solution of 4th order Elliptic Problems with Variable Coefficients. ESAIM: M2AN 133 (1999) 807–836. Zbl0942.65133
  10. [10] P.K. Bhattacharyya and N. Nataraj, Error Estimates for Isoparametric Mixed Finite Element Solution of 4th-Order Elliptic Problems with Variable Coefficients. In preparation. Zbl1006.65123
  11. [11] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO Anal. Numér. 8 (1974) 129–151. Zbl0338.90047
  12. [12] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, Berlin, Heidelberg, New York (1991). Zbl0788.73002MR1115205
  13. [13] F. Brezzi and P.A. Raviart, Mixed finite element methods for 4th-order elliptic equations. Topics Numer. Anal. III, J. Miller, Ed., Academic Press, New York (1978) 33–56. Zbl0434.65085
  14. [14] C. Canuto, Eigenvalue approximation by mixed methods. RAIRO Anal. Numér. 12 (1978) 27–50. Zbl0434.65032
  15. [15] F. Chatelin, Spectral Approximation of Linear Operators. Academic Press, New York (1983). Zbl0517.65036MR716134
  16. [16] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978). Zbl0383.65058MR520174
  17. [17] P.G. Ciarlet and P.A. Raviart, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods, in Math. Found. Finite El. Method Appl. Part. Differ. Equations, A.K. Aziz and I. Babuška, Eds., Sympos. Univ. Maryland, Baltimore (1972) 409–474. Zbl0262.65070
  18. [18] M. Dauge, Elliptic Boundary Value Problems on Corner Domains. Springer-Verlag, Berlin, Heidelberg, New York (1988). Zbl0668.35001MR961439
  19. [19] N.J. DeCapua and B.C. Sun, Transverse vibration of a class of orthotropic plates. J. Appl. Mech. (1972) 613–615. 
  20. [20] S. Gopalsamy and P.K. Bhattacharyya, On existence and uniqueness of solution of boundary value problems of fourth-order elliptic partial differential equations with variable coefficients. J. Math. Anal. Appl. 136 (1988) 589–608. Zbl0673.35022
  21. [21] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). Zbl0695.35060MR775683
  22. [22] K. Ishihara, A mixed finite element method for the biharmonic eigenvalue problem of plate bending. Publ. Res. Inst. Math. Sci. Kyoto Univ. 14 (1978) 399–414. Zbl0389.73075
  23. [23] K. Ishihara, The buckling of plates by the mixed finite element method. Mem. Numer. Math. 5 (1978) 73–82. Zbl0435.73078
  24. [24] V.A. Kondratev, Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Obshch. 16 (1967) 209–292. Zbl0194.13405
  25. [25] M.P. Lebaud, Error estimate in an isoparametric finite element Eigenvalue Problem. Math. Comp. 63 (1994) 19–40. Zbl0807.65110
  26. [26] A.W. Leissa, Vibration of Plates. NASA SP-160 (1969). 
  27. [27] S.G. Leknitskii, Anisotropic Plates. Gordon and Breach Science Publishers, New York (1968). 
  28. [28] J.-L. Lions, Problèmes aux limites dans les équations aux dérivées partielles. Presses Univ. Montréal, Montreal (1965). Zbl0143.14003MR251372
  29. [29] B. Mercier, J. Osborn, J. Rappaz and P.A. Raviart, Eigenvalue approximation by mixed and hybrid methods. Math. Comp. 36 (1981) 427–453. Zbl0472.65080
  30. [30] T. Miyoshi, A finite element method for the solution of fourth-order partial differential equations. Kumamoto J. Sci. (Math.) 9 (1973) 87–116. Zbl0249.35007
  31. [31] N. Nataraj, On Mixed Finite Element Analysis Of Fourth Order Elliptic Source/Eigenvalue Problems in Convex Domains. Ph.D. Thesis, Dept. of Mathematics, Indian Institute of Technology, Delhi (1998). 
  32. [32] L.A. Oganesian and L.A. Rukhovec, Variational difference methods for the solution of elliptic problems. Izv. Akad. Nauk Armyan. SSR, Yerevan (1979). In Russian. 
  33. [33] A.B. Ouaritini, Méthodes d’éléments finis mixtes pour des problèmes de coques minces. Thèse de Docteur de 3 e cycle, Université de Pau et des Pays de L’Adour, France (1984). 
  34. [34] O. Pironneau, Méthodes des éléments finis pour les fluides. Masson, Paris (1988). Zbl0748.76003
  35. [35] P.A. Raviart and J.M. Thomas, Introduction à l’analyse numérique des équations aux dérivées partielles. Masson, Paris (1983). Zbl0561.65069
  36. [36] J.E. Roberts and J.M. Thomas, Mixed and Hybrid Methods, in Handbook of Numerical Analysis. Vol. II, in Finite Element Methods (Part 1), P.G. Ciarlet and J.-L. Lions, Eds., North-Holland Publishing Company, Amsterdam, New York, Oxford, (1991) 523–633. Zbl0875.65090
  37. [37] G. Strang and G.J. Fix, An Analysis of the Finite Element Method. Prentice-Hall, New York (1973). Zbl0356.65096MR443377
  38. [38] S. Timoshenko and S. Woinowsky-Kreiger, Theory of Plates and Shells. McGraw-Hill Book Company, New York (1959). 
  39. [39] M. Vanmaele and A. Ženíšek, External finite-element approximations of eigenvalue problems. RAIRO Modél. Math. Anal. Numér. 27 (1993) 565–589. Zbl0792.65086
  40. [40] M. Vanmaele and A. Ženíšek, The combined effect of numerical integration and approximation of boundary in the finite element method for eigenvalue problems. Numer. Math. (1995). Zbl0836.65111MR1347167
  41. [41] A. Zeníšek, Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations. Academic Press, New York (1990). Zbl0731.65090MR1086876

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.