Eigenvalue approximations by mixed methods

C. Canuto

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1978)

  • Volume: 12, Issue: 1, page 27-50
  • ISSN: 0764-583X

How to cite

top

Canuto, C.. "Eigenvalue approximations by mixed methods." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 12.1 (1978): 27-50. <http://eudml.org/doc/193309>.

@article{Canuto1978,
author = {Canuto, C.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {abstract eigenvalue problem; Hilbert spaces; continuous linear forms; finite-dimensional approximation; approximation error; fourth order problems; free vibrations of a clamped plate; mixed finite elements; second order problems; numerical tests},
language = {eng},
number = {1},
pages = {27-50},
publisher = {Dunod},
title = {Eigenvalue approximations by mixed methods},
url = {http://eudml.org/doc/193309},
volume = {12},
year = {1978},
}

TY - JOUR
AU - Canuto, C.
TI - Eigenvalue approximations by mixed methods
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1978
PB - Dunod
VL - 12
IS - 1
SP - 27
EP - 50
LA - eng
KW - abstract eigenvalue problem; Hilbert spaces; continuous linear forms; finite-dimensional approximation; approximation error; fourth order problems; free vibrations of a clamped plate; mixed finite elements; second order problems; numerical tests
UR - http://eudml.org/doc/193309
ER -

References

top
  1. 1. I. BABUSKA, The Finite Element Method with Lagrangian Multipliers, Num.Math., 20, 1973, pp. 179-192. Zbl0258.65108
  2. 2. I. BABUSKA and A. K. Aziz, Survey Lectures on the Mathematical Foundations of the Finite Element Method in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations; A. K, Aziz, Ed., Academic Press, NewYork 1972, pp. 3-359. Zbl0268.65052
  3. 3. I. BABUSKA, J. T. ODEN and J. K. LEE, Mixed-Hybrid Finite Element Approximations of Second Order Elliptic Boundary-Value Problems, TICOM Report 75-7, University of Texas at Austin, 1975. Zbl0382.65056
  4. 4. I. BABUSKA and J. E. OSBORN, Numerical Treatment of Eigenvalue Problems for Differential Equations with Discontinuous Coefficients, Technical Note BN-853, University of Maryland, College Park, 1977. Zbl0418.65053
  5. 5. G. BIRKHOFF, C. DE BOOR, B. SWARTZ and B. WENDROFF, Rayleigh-Ritz Approximation by Piecewise Cubic Polynomials, S.I.A.M. J. Num. Anal., 13, 1973 pp. 188-203. Zbl0143.38002
  6. 6. J. H. BRAMBLE and J. E. OSBORN, Rate of Convergence Estimates for Nonself-adjoint Eigenvalue Approximation, Math. of Comp., vol. 27, No. 123, 1973 pp. 525-549. Zbl0305.65064
  7. 7. F. BREZZI, On the Existence, Uniqueness and Approximations of Saddle-Point Problems Arising from Lagrangian Multipliers, R.A.I.R.O., R 2, août 1974, pp. 129-151. Zbl0338.90047
  8. 8. F. BREZZI and P. A. RAVIARTMixed Finite Element Methods for 4th Order Elliptic Equations, Rapport Interne No. 9, C.M.A. École Polytechnique, Palaiseau, 1976. MR657975
  9. 9. P. G. CIARLET and P. A. RAVIART, A Mixed Finite Element Method for the Biharmonic Equation Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, C. DE BOOR, Ed., Academic Press, New York, 1974, pp. 125-145. Zbl0337.65058MR657977
  10. 10. G. FIXEigenvalue Approximation by the Finite Element Method, Adv. in Math., 10, 1973, pp. 300-316. Zbl0257.65086MR341900
  11. 11. R. GLOWINSKI, Approximations externes, par éléments finis de Lagrange d'ordre un et deux, du problème de Dirichlet pour l'opéraieur biharmonique. Méthode itérative de résolutions des problèmes approchés, Topics in Numerical Analysis, J. J. H. MILLER, Ed., Academic Press, London, 1973, pp. 123-171. Zbl0277.35003MR351120
  12. 12. C. GOULAOUIC, Valeurs propres de problèmes aux limites irréguliers : applications, in Spectral Analysis, C.I.M.E. Session 1973, Cremonese, Rome, 1974, pp. 80-140. 
  13. 13. V. A. KONDRAT'EV, Boundary Problems for Elliptic Equations in Domains with Conical or Angular Points, Trans. Moscow Math. Soc, vol. 16, 1967 pp. 227-313. Zbl0194.13405MR226187
  14. 14. M. MERIGOT, Régularité des fonctions propres du laplacien dans un cône,C. R. Acad. Sc, Paris, 279, série A, 1974, pp. 503-505 Zbl0294.35060MR377258
  15. 15. M. MERIGOT, Solutions en norme LP des problèmes élliptiques dans des polygônes plans, Thèse à l'Université de Nice, 1974. 
  16. 16. J. E. OSBORN, Spectral Approximation for Compact Operators, Math, of Comp., 29, 1975, pp. 712-725 Zbl0315.35068MR383117

Citations in EuDML Documents

top
  1. Tunc Geveci, B. Daya Reddy, Howard T. Pearce, On the approximation of the spectrum of the Stokes operator
  2. Pulin Kumar Bhattacharyya, Neela Nataraj, Isoparametric mixed finite element approximation of eigenvalues and eigenvectors of 4th order eigenvalue problems with variable coefficients
  3. B. Mercier, J. Rappaz, Eigenvalue Approximation via Non-Conforming and Hybrid Finite Element Methods
  4. S. Kesavan, Une méthode d'éléments finis mixte pour les équations de Von Kármán
  5. Claudio Canuto, A hybrid finite element method to compute the free vibration frequencies of a clamped plate
  6. Pulin Kumar Bhattacharyya, Neela Nataraj, Isoparametric mixed finite element approximation of eigenvalues and eigenvectors of 4th order eigenvalue problems with variable coefficients

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.