Palindromic complexity of infinite words associated with non-simple Parry numbers
L'ubomíra Balková; Zuzana Masáková
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2009)
- Volume: 43, Issue: 1, page 145-163
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topBalková, L'ubomíra, and Masáková, Zuzana. "Palindromic complexity of infinite words associated with non-simple Parry numbers." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 43.1 (2009): 145-163. <http://eudml.org/doc/246002>.
@article{Balková2009,
abstract = {We study the palindromic complexity of infinite words $u_\beta $, the fixed points of the substitution over a binary alphabet, $\varphi (0)=0^a1$, $\varphi (1)=0^b1$, with $a-1\ge b\ge 1$, which are canonically associated with quadratic non-simple Parry numbers $\beta $.},
author = {Balková, L'ubomíra, Masáková, Zuzana},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {palindromes; beta-expansions; infinite words},
language = {eng},
number = {1},
pages = {145-163},
publisher = {EDP-Sciences},
title = {Palindromic complexity of infinite words associated with non-simple Parry numbers},
url = {http://eudml.org/doc/246002},
volume = {43},
year = {2009},
}
TY - JOUR
AU - Balková, L'ubomíra
AU - Masáková, Zuzana
TI - Palindromic complexity of infinite words associated with non-simple Parry numbers
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2009
PB - EDP-Sciences
VL - 43
IS - 1
SP - 145
EP - 163
AB - We study the palindromic complexity of infinite words $u_\beta $, the fixed points of the substitution over a binary alphabet, $\varphi (0)=0^a1$, $\varphi (1)=0^b1$, with $a-1\ge b\ge 1$, which are canonically associated with quadratic non-simple Parry numbers $\beta $.
LA - eng
KW - palindromes; beta-expansions; infinite words
UR - http://eudml.org/doc/246002
ER -
References
top- [1] P. Ambrož, Ch. Frougny, Z. Masáková and E. Pelantová, Palindromic complexity of infinite words associated with simple Parry numbers. Annales de l’Institut Fourier 56 (2006) 2131–2160. Zbl1121.68089MR2290777
- [2] P. Baláži, Z. Masáková and E. Pelantová, Factor versus palindromic complexity of uniformly recurrent infinite words. Theor. Comp. Sci. 380 (2007) 266–275. Zbl1119.68137MR2330997
- [3] L’. Balková, Complexity for infinite words associated with quadratic non-simple Parry numbers. J. Geom. Sym. Phys. 7 (2006) 1–11. Zbl1117.68058MR2290122
- [4] L’. Balková, E. Pelantová and O. Turek, Combinatorial and arithmetical properties of infinite words associated with non-simple quadratic Parry numbers. RAIRO-Theor. Inf. Appl. 41 (2007) 307–328. Zbl1144.11009MR2354360
- [5] L’. Balková, E. Pelantová and W. Steiner, Sequences with constant number of return words. Monatshefte fur Mathematik, to appear. Zbl1185.68503
- [6] J. Bernat, Étude sur le -développement et applications. Mémoire de D.E.A., Université de la Méditerrannée Aix-Marseille (2002).
- [7] Č. Burdík, Ch. Frougny, J.P. Gazeau and R. Krejcar, Beta-integers as natural counting systems for quasicrystals. J. Phys. A 31 (1998) 6449–6472. Zbl0941.52019MR1644115
- [8] D. Damanik and L.Q. Zamboni, Combinatorial properties of Arnoux-Rauzy subshifts and applications to Schrödinger operators. Rev. Math. Phys. 15 (2003) 745–763. Zbl1081.81521MR2018286
- [9] D. Damanik and D. Zare, Palindrome complexity bounds for primitive substitution sequences. Discrete Math. 222 (2000) 259–267. Zbl0962.68141MR1771405
- [10] S. Fabre, Substitutions et -systèmes de numération. Theoret. Comput. Sci. 137 (1995) 219–236. Zbl0872.11017MR1311222
- [11] Ch. Frougny, Z. Masáková and E. Pelantová, Complexity of infinite words associated with beta-expansions. RAIRO-Theor. Inf. Appl. 38 (2004), 163–185; Corrigendum. RAIRO-Theor. Inf. Appl. 38 (2004) 269–271. Zbl1104.11013MR2076404
- [12] Ch. Frougny, Z. Masáková and E. Pelantová, Infinite special branches in words associated with beta-expansions. Discrete Math. Theor. Comput. Sci. 9 (2007) 125–144. Zbl1165.11012MR2306524
- [13] A. Hof, O. Knill and B. Simon, Singular continuous spectrum for palindromic Schrödinger operators. Commun. Math. Phys. 174 (1995) 149–159. Zbl0839.11009MR1372804
- [14] J. Lagarias, Geometric models for quasicrystals I. Delone sets of finite type. Discrete Comput. Geom. 21 (1999) 161–191. Zbl0924.68190MR1668082
- [15] Y. Meyer, Quasicrystals, Diophantine approximation, and algebraic numbers, in Beyond Quasicrystals, edited by F. Axel, D. Gratias. EDP Sciences, Les Ulis; Springer, Berlin (1995) 6–13. Zbl0881.11059MR1420415
- [16] W. Parry, On the beta-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960) 401–416. Zbl0099.28103MR142719
- [17] A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957) 477–493. Zbl0079.08901MR97374
- [18] K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc. 12 (1980) 269–278. Zbl0494.10040MR576976
- [19] D. Shechtman, I. Blech, D. Gratias and J. Cahn, Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53 (1984) 1951–1954.
- [20] W.P. Thurston, Groups, tilings, and finite state automata. Geometry supercomputer project research report GCG1, University of Minnesota (1989).
- [21] O. Turek, Balance properties of the fixed point of the substitution associated to quadratic simple Pisot numbers. RAIRO-Theor. Inf. Appl. 41 (2007) 123–135. Zbl1146.68410MR2350639
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.