Palindromic complexity of infinite words associated with simple Parry numbers
Petr Ambrož[1]; Zuzana Masáková[2]; Edita Pelantová[2]; Christiane Frougny[3]
- [1] Czech Technical University Doppler Institute for Mathematical Physics and Applied Mathematics Department of Mathematics, FNSPE Trojanova 13, 120 00 Praha 2 (Czech Republic)
- [2] Doppler Institute for Mathematical Physics and Applied Mathematics and Department of Mathematics, FNSPE, Czech Technical University, Trojanova 13, 120 00 Praha 2 Czech Republic
- [3] Université Paris 7 LIAFA, UMR 7089 CNRS 2 place Jussieu 75251 Paris Cedex 05 (France) and Université Paris 8
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 7, page 2131-2160
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAmbrož, Petr, et al. "Palindromic complexity of infinite words associated with simple Parry numbers." Annales de l’institut Fourier 56.7 (2006): 2131-2160. <http://eudml.org/doc/10200>.
@article{Ambrož2006,
abstract = {A simple Parry number is a real number $\beta >1$ such that the Rényi expansion of $1$ is finite, of the form $d_\beta (1)=t_1 \cdots t_m$. We study the palindromic structure of infinite aperiodic words $u_\beta $ that are the fixed point of a substitution associated with a simple Parry number $\beta $. It is shown that the word $u_\beta $ contains infinitely many palindromes if and only if $t_1=t_2= \cdots =t_\{m-1\}\ge t_m$. Numbers $\beta $ satisfying this condition are the so-called confluent Pisot numbers. If $t_m=1$ then $u_\beta $ is an Arnoux-Rauzy word. We show that if $\beta $ is a confluent Pisot number then $\{\mathcal\{P\}\}(n+1)+ \{\mathcal\{P\}\}(n) = \{\mathcal\{C\}\}(n+1) - \{\mathcal\{C\}\}(n)+2$, where $\{\mathcal\{P\}\}(n)$ is the number of palindromes and $\{\mathcal\{C\}\}(n)$ is the number of factors of length $n$ in $u_\beta $. We then give a complete description of the set of palindromes, its structure and properties.},
affiliation = {Czech Technical University Doppler Institute for Mathematical Physics and Applied Mathematics Department of Mathematics, FNSPE Trojanova 13, 120 00 Praha 2 (Czech Republic); Doppler Institute for Mathematical Physics and Applied Mathematics and Department of Mathematics, FNSPE, Czech Technical University, Trojanova 13, 120 00 Praha 2 Czech Republic; Doppler Institute for Mathematical Physics and Applied Mathematics and Department of Mathematics, FNSPE, Czech Technical University, Trojanova 13, 120 00 Praha 2 Czech Republic; Université Paris 7 LIAFA, UMR 7089 CNRS 2 place Jussieu 75251 Paris Cedex 05 (France) and Université Paris 8},
author = {Ambrož, Petr, Masáková, Zuzana, Pelantová, Edita, Frougny, Christiane},
journal = {Annales de l’institut Fourier},
keywords = {beta-expansions; palindromic complexity},
language = {eng},
number = {7},
pages = {2131-2160},
publisher = {Association des Annales de l’institut Fourier},
title = {Palindromic complexity of infinite words associated with simple Parry numbers},
url = {http://eudml.org/doc/10200},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Ambrož, Petr
AU - Masáková, Zuzana
AU - Pelantová, Edita
AU - Frougny, Christiane
TI - Palindromic complexity of infinite words associated with simple Parry numbers
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 7
SP - 2131
EP - 2160
AB - A simple Parry number is a real number $\beta >1$ such that the Rényi expansion of $1$ is finite, of the form $d_\beta (1)=t_1 \cdots t_m$. We study the palindromic structure of infinite aperiodic words $u_\beta $ that are the fixed point of a substitution associated with a simple Parry number $\beta $. It is shown that the word $u_\beta $ contains infinitely many palindromes if and only if $t_1=t_2= \cdots =t_{m-1}\ge t_m$. Numbers $\beta $ satisfying this condition are the so-called confluent Pisot numbers. If $t_m=1$ then $u_\beta $ is an Arnoux-Rauzy word. We show that if $\beta $ is a confluent Pisot number then ${\mathcal{P}}(n+1)+ {\mathcal{P}}(n) = {\mathcal{C}}(n+1) - {\mathcal{C}}(n)+2$, where ${\mathcal{P}}(n)$ is the number of palindromes and ${\mathcal{C}}(n)$ is the number of factors of length $n$ in $u_\beta $. We then give a complete description of the set of palindromes, its structure and properties.
LA - eng
KW - beta-expansions; palindromic complexity
UR - http://eudml.org/doc/10200
ER -
References
top- Cyril Allauzen, Une caractérisation simple des nombres de Sturm, J. Théor. Nombres Bordeaux 10 (1998), 237-241 Zbl0930.11051MR1828243
- Jean-Paul Allouche, Michael Baake, Julien Cassaigne, David Damanik, Palindrome complexity, Theoret. Comput. Sci. 292 (2003), 9-31 Zbl1064.68074MR1964623
- Pierre Arnoux, Gérard Rauzy, Représentation géométrique de suites de complexité , Bull. Soc. Math. France 119 (1991), 199-215 Zbl0789.28011MR1116845
- Peter Baláži, Zuzana Masáková, Edita Pelantová, Complete characterization of substitution invariant Sturmian sequences, Integers 5 (2005) Zbl1121.11020MR2192233
- Peter Baláži, Zuzana Masáková, Edita Pelantová, Factor versus palindromic complexity of uniformly recurrent infinite words, (2006) Zbl1119.68137MR2192233
- Peter Baláži, Edita Pelantová, Palindromic complexity of infinite words coding interval exchange transformations, Words 2005, 5 International Conference on Words, actes 36 (2005), 113-118, BrlekS.S.
- Ľubomíra Balková, Factor and palindromic complexity for infninite words associated with quadratic non-simple Parry numbers, (2006)
- Damien Barache, Bernard Champagne, Jean-Pierre Gazeau, Pisot-cyclotomic quasilattices and their symmetry semigroups, Quasicrystals and discrete geometry (Toronto, ON, 1995) 10 (1998), 15-66, Amer. Math. Soc., Providence, RI Zbl0916.20025MR1636775
- Julien Bernat, Propriétés arithmétiques de la -numération, (2005)
- Jean Berstel, Recent results on extensions of Sturmian words, Internat. J. Algebra Comput. 12 (2002), 371-385 Zbl1007.68141MR1902372
- Jean Berstel, Luc Boasson, Olivier Carton, Isabelle Fagnot, Infinite words without palindrome, (2006)
- Valérie Berthé, Hiromi Ei, Shunji Ito, Hui Rao, Invertible susbtitutions and Sturmian words: an application of Rauzy fractals, (2006) Zbl1140.11014
- Anne Bertrand, Développements en base de Pisot et répartition modulo , C. R. Acad. Sci. Paris 285 (1977), 419-421 Zbl0362.10040MR447134
- Anne Bertrand-Mathis, Comment écrire les nombres entiers dans une base qui n’est pas entière, Acta Math. Hungar. 54 (1989), 237-241 Zbl0695.10005MR1029085
- S. Brlek, S. Hamel, M. Nivat, C. Reutenauer, On the palindromic complexity of infinite words, Internat. J. Found. Comput. Sci. 15 (2004), 293-306 Zbl1067.68113MR2071459
- Čestmír Burdík, Christiane Frougny, Jean-Pierre Gazeau, Rudolf Krejcar, Beta-integers as natural counting systems for quasicrystals, J. Phys. A 31 (1998), 6449-6472 Zbl0941.52019MR1644115
- Julien Cassaigne, Complexité et facteurs spéciaux, Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 67-88 Zbl0921.68065MR1440670
- D. Damanik, Luca Q. Zamboni, Combinatorial properties of Arnoux-Rauzy subshifts and applications to Schrödinger operators, Rev. Math. Phys. 15 (2003), 745-763 Zbl1081.81521MR2018286
- Xavier Droubay, Jacques Justin, Giuseppe Pirillo, Epi-Sturmian words and some constructions of de Luca and Rauzy, Theoret. Comput. Sci. 255 (2001), 539-553 Zbl0981.68126MR1819089
- Xavier Droubay, Giuseppe Pirillo, Palindromes and Sturmian words, Theoret. Comput. Sci. 223 (1999), 73-85 Zbl0930.68116MR1704637
- Stéphane Fabre, Substitutions et -systèmes de numération, Theoret. Comput. Sci. 137 (1995), 219-236 Zbl0872.11017MR1311222
- Christiane Frougny, Confluent linear numeration systems, Theoret. Comput. Sci. 106 (1992), 183-219 Zbl0787.68057MR1192767
- Christiane Frougny, Zuzana Masáková, Edita Pelantová, Complexity of infinite words associated with beta-expansions, Theor. Inform. Appl. 38 (2004), 163-185 Zbl1104.11013MR2060775
- Christiane Frougny, Zuzana Masáková, Edita Pelantová, Infinite left special branches in words associated with beta expansions, (2005) Zbl1165.11012
- A. Hof, O. Knill, B. Simon, Singular continuous spectrum for palindromic Schrödinger operators, Comm. Math. Phys. 174 (1995), 149-159 Zbl0839.11009MR1372804
- Jacques Justin, Giuseppe Pirillo, Episturmian words and episturmian morphisms, Theoret. Comput. Sci. 276 (2002), 281-313 Zbl1002.68116MR1896357
- Michael Keane, Interval exchange transformations, Math. Z. 141 (1975), 25-31 Zbl0278.28010MR357739
- M. Lothaire, Algebraic Combinatorics on Words, 90 (2002), Cambridge University Press, Cambridge Zbl1001.68093MR1905123
- W. Parry, On the -expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416 Zbl0099.28103MR142719
- Bruno Parvaix, Substitution invariant Sturmian bisequences, J. Théor. Nombres Bordeaux 11 (1999), 201-210 Zbl0978.11005MR1730440
- N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, 1794 (2002), Springer Verlag Zbl1014.11015MR1970385
- Martine Queffélec, Substitution dynamical systems—spectral analysis, 1294 (1987), Springer-Verlag, Berlin Zbl0642.28013MR924156
- Gérard Rauzy, Échanges d’intervalles et transformations induites, Acta Arith. 34 (1979), 315-328 Zbl0414.28018MR543205
- Alfred Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar 8 (1957), 477-493 Zbl0079.08901MR97374
- Boris Solomyak, Conjugates of beta-numbers and the zero-free domain for a class of analytic functions, Proc. London Math. Soc. (3) 68 (1994), 477-498 Zbl0820.30007MR1262305
- Shin-Ichi Yasutomi, On Sturmian sequences which are invariant under some substitutions, Number theory and its applications (Kyoto, 1997) 2 (1999), 347-373, Kluwer Acad. Publ., Dordrecht Zbl0971.11007MR1738827
Citations in EuDML Documents
top- L'ubomíra Balková, Zuzana Masáková, Palindromic complexity of infinite words associated with non-simple Parry numbers
- L'ubomíra Balková, Zuzana Masáková, Palindromic complexity of infinite words associated with non-simple Parry numbers
- Lubomíra Balková, Edita Pelantová, Ondřej Turek, Combinatorial and arithmetical properties of infinite words associated with non-simple quadratic Parry numbers
- Julien Bernat, Study of irreducible balanced pairs for substitutive languages
- L'ubomíra Balková, Edita Pelantová, Štěpán Starosta, Sturmian jungle (or garden?) on multiliteral alphabets
- L'ubomíra Balková, Edita Pelantová, Štěpán Starosta, Sturmian jungle (or garden?) on multiliteral alphabets
- Amy Glen, Jacques Justin, Episturmian words: a survey
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.