Comparing imperfection ratio and imperfection index for graph classes
Arie M. C. A. Koster; Annegret K. Wagler
RAIRO - Operations Research - Recherche Opérationnelle (2008)
- Volume: 42, Issue: 4, page 485-500
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] N.E. Aguilera, M.S. Escalante, and G.L. Nasini, A generalization of the Perfect Graph Theorem under the disjunctive index. Math. Oper. Res. 27 (2002) 460–469. Zbl1083.05505MR1926653
- [2] E. Balas, G. Cornuéjols, and S. Ceria, A lift-and-project cutting plane algorithm for mixed 0-1 programs. Math. Program. 58 (1993) 295–324. Zbl0796.90041MR1216789
- [3] R.G. Bland, H.-C. Huang, and L.E. Trotter, Jr., Graphical Properties Related to Minimal Imperfection. Discrete Math. 27 (1979) 11–22. Zbl0421.05028MR534949
- [4] S. Ceria, Lift-and-project cuts and perfect graphs. Math. Program. 98 (2003) 309–317. Zbl1082.05044MR2021058
- [5] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The Strong Perfect Graph Theorem. Ann. Math. 164 (2006) 51–229. Zbl1112.05042MR2233847
- [6] V. Chvátal, On Certain Polytopes Associated with Graphs. J. Comb. Theory (B) 18 (1975) 138–154. Zbl0277.05139MR371732
- [7] S. Coulonges, A. Pêcher, and A. Wagler, Characterizing and bounding the imperfection ratio for some graph classes. Math. Program. (to appear). Zbl1169.90025MR2470884
- [8] W.H. Cunningham, Polyhedra for composed independence systems, in: Bonn Workshop on Combinatorial Optimization, edited by A. Bachem, M. Grötschel, and B. Korte, Ann. Discrete Math. 16 (1982) 57–67. Zbl0493.05015MR686299
- [9] J.R. Edmonds, Maximum Matching and a Polyhedron with (0, 1) Vertices. J. Res. Nat. Bur. Standards 69B (1965) 125–130. Zbl0141.21802MR183532
- [10] A.M.H. Gerards and A. Schrijver, Matrices with the Edmonds-Johnson Property. Combinatorica 6 (1986) 403–417. Zbl0641.05039MR879340
- [11] A.M.H. Gerards, G. Maróti, and A. Schrijver, Note on: N.E. Aguilera, M.S. Escalante, and G.L. Nasini, “A generalization of the Perfect Graph Theorem under the disjunctive index”. Math. Oper. Res. 28 (2003) 884–885. Zbl1082.05504MR2015917
- [12] S. Gerke and C. McDiarmid, Graph imperfection I, II. J. Comb. Theor. (B) 83 (2001) 58–78, 79–101. Zbl1018.05027MR1855796
- [13] M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combinatorial optimization. Springer-Verlag (1988). Zbl0634.05001MR936633
- [14] M. Larsen, J. Propp, and D.H. Ullman, The fractional chromatic number of Mycielski graphs. J. Graph Theory 20 (1995) 411–416. Zbl0830.05027
- [15] L. Lipták and L. Tunçel, Lift-and-project ranks and antiblocker duality. Oper. Res. Lett. 33 (2005) 35–41. Zbl1076.90035MR2091033
- [16] L. Lovász, Normal hypergraphs and the weak perfect graph conjecture. Discrete Math. 2 (1972) 253–267. Zbl0239.05111MR302480
- [17] J. Mycielski, Sur le coloriage des graphs. Colloq. Math. 3 (1955) 161–162. Zbl0064.17805MR69494
- [18] G.L. Nasini, El índice de imperfección de un grafo y su complemento, in Anales de las XXX JAIIO-SIO’01 (2001) 101–106.
- [19] B. Reed and J. Ramirez-Alfonsin, Perfect Graphs, Wiley (2001). Zbl0972.00015MR1858793
- [20] F.B. Shepherd, Near-Perfect Matrices. Math. Program. 64 (1994) 295–323. Zbl0804.05036MR1286452
- [21] A. Wagler, Relaxing perfectness: which graphs are “almost” perfect? in The sharpest cut, impact of Manfred Padberg and his Work, edited by M. Grötschel , MPS/SIAM series on Optimization 4 (2004). Zbl1072.05026MR2077556
- [22] A. Wagler, Antiwebs are rank-perfect. A Quaterly Journal of Operations Research 2 (2004) 149–152. Zbl1112.05082MR2073117
- [23] A. Wagler, On the stable set polytopes of classes of near-bipartite graphs. A Quaterly Journal of Operations Research 3 (2005) 329–336. Zbl1134.90551