Geometric algorithms and combinatorial optimization

Martin Grötschel; László Lovász; Alexander Schrijver

  • Publisher: Springer(Berlin [u.a.]), 1988

Book Parts

  1. CHAPTER: Chapter 0. Mathematical PreliminariesAccess to Book Part 
  2. CHAPTER: Chapter 1. Complexity, Oracles, and Numerical ComputationAccess to Book Part 
  3. CHAPTER: Chapter 2: Algorithmic Aspects of Convex Sets: Formulation of the ProblemsAccess to Book Part 
  4. CHAPTER: Chapter 3. The Ellipsoid MethodAccess to Book Part 
  5. CHAPTER: Chapter 4. Algorithms for Convex BodiesAccess to Book Part 
  6. CHAPTER: Chapter 5. Diophantie Approximation and Basic ReductionAccess to Book Part 
  7. CHAPTER: Chapter 6. Rational PolyhedraAccess to Book Part 
  8. CHAPTER: Chapter 7. Combinatorial Optimization: Some Basic ExamplesAccess to Book Part 
  9. CHAPTER: Chapter 8. Combinatorial Optimization: A Toer d'HorizonAccess to Book Part 
  10. CHAPTER: Chapter 9. Stable Sets in GraphsAccess to Book Part 
  11. CHAPTER: Chapter 10. Submodular FunctionsAccess to Book Part 
  12. INDEX OF AUTHORS: Author IndexAccess to Book Part 
  13. INDEX OF SUBJECTS: Subject IndexAccess to Book Part 
  14. APPENDIX: Five Basic ProblemsAccess to Book Part 

How to cite


Grötschel, Martin, Lovász, László, and Schrijver, Alexander. Geometric algorithms and combinatorial optimization. Berlin [u.a.]: Springer, 1988. <>.

author = {Grötschel, Martin, Lovász, László, Schrijver, Alexander},
keywords = {ellipsoid method; basis reduction; combinatorial optimization; algorithms},
language = {eng},
location = {Berlin [u.a.]},
publisher = {Springer},
title = {Geometric algorithms and combinatorial optimization},
url = {},
year = {1988},

AU - Grötschel, Martin
AU - Lovász, László
AU - Schrijver, Alexander
TI - Geometric algorithms and combinatorial optimization
PY - 1988
CY - Berlin [u.a.]
PB - Springer
LA - eng
KW - ellipsoid method; basis reduction; combinatorial optimization; algorithms
UR -
ER -

Citations in EuDML Documents

  1. Firdovsi Sharifov, Perfectly matchable subgraph problem on a bipartite graph
  2. Michal Černý, Goffin's algorithm for zonotopes
  3. Mustapha Ç. Pinar, A derivation of Lovász’ theta via augmented Lagrange duality
  4. Dominique de Werra, Daniel Kobler, Coloration de graphes : fondements et applications
  5. Mustapha Ç. Pinar, A Derivation of Lovász' Theta via Augmented Lagrange Duality
  6. Arie M. C. A. Koster, Annegret K. Wagler, Comparing imperfection ratio and imperfection index for graph classes
  7. Dominique de Werra, Daniel Kobler, Coloration de graphes : fondements et applications
  8. Andreas Eisenblätter, Martin Grötschel, Arie M.C.A. Koster, Frequency planning and ramifications of coloring
  9. Martin Kochol, Symmetrized and continuous generalization of transversals
  10. Arie M.C.A. Koster, Annegret K. Wagler, Comparing Imperfection Ratio and Imperfection Index for Graph Classes

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.