Geometric algorithms and combinatorial optimization
Martin Grötschel; László Lovász; Alexander Schrijver
- Publisher: Springer(Berlin [u.a.]), 1988
Access Full Book
topBook Parts
top- CHAPTER: Chapter 0. Mathematical PreliminariesAccess to Book Part
- CHAPTER: Chapter 1. Complexity, Oracles, and Numerical ComputationAccess to Book Part
- CHAPTER: Chapter 2: Algorithmic Aspects of Convex Sets: Formulation of the ProblemsAccess to Book Part
- CHAPTER: Chapter 3. The Ellipsoid MethodAccess to Book Part
- CHAPTER: Chapter 4. Algorithms for Convex BodiesAccess to Book Part
- CHAPTER: Chapter 5. Diophantie Approximation and Basic ReductionAccess to Book Part
- CHAPTER: Chapter 6. Rational PolyhedraAccess to Book Part
- CHAPTER: Chapter 7. Combinatorial Optimization: Some Basic ExamplesAccess to Book Part
- CHAPTER: Chapter 8. Combinatorial Optimization: A Toer d'HorizonAccess to Book Part
- CHAPTER: Chapter 9. Stable Sets in GraphsAccess to Book Part
- CHAPTER: Chapter 10. Submodular FunctionsAccess to Book Part
- INDEX OF AUTHORS: Author IndexAccess to Book Part
- INDEX OF SUBJECTS: Subject IndexAccess to Book Part
- APPENDIX: Five Basic ProblemsAccess to Book Part
How to cite
topCitations in EuDML Documents
top- Firdovsi Sharifov, Perfectly matchable subgraph problem on a bipartite graph
- Michal Černý, Goffin's algorithm for zonotopes
- Mustapha Ç. Pinar, A derivation of Lovász’ theta via augmented Lagrange duality
- Arie M. C. A. Koster, Annegret K. Wagler, Comparing imperfection ratio and imperfection index for graph classes
- Dominique de Werra, Daniel Kobler, Coloration de graphes : fondements et applications
- Andreas Eisenblätter, Martin Grötschel, Arie M.C.A. Koster, Frequency planning and ramifications of coloring
- Arie M.C.A. Koster, Annegret K. Wagler, Comparing Imperfection Ratio and Imperfection Index for Graph Classes
- Dominique de Werra, Daniel Kobler, Coloration de graphes : fondements et applications
- Mustapha Ç. Pinar, A Derivation of Lovász' Theta via Augmented Lagrange Duality
- Renaud Sirdey, Hervé L. M. Kerivin, A branch-and-cut algorithm for a resource-constrained scheduling problem