Continuous reformulations and heuristics for the euclidean travelling salesperson problem
Tuomo Valkonen; Tommi Kärkkäinen
ESAIM: Control, Optimisation and Calculus of Variations (2009)
- Volume: 15, Issue: 4, page 895-913
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topValkonen, Tuomo, and Kärkkäinen, Tommi. "Continuous reformulations and heuristics for the euclidean travelling salesperson problem." ESAIM: Control, Optimisation and Calculus of Variations 15.4 (2009): 895-913. <http://eudml.org/doc/246063>.
@article{Valkonen2009,
abstract = {We consider continuous reformulations of the euclidean travelling salesperson problem (TSP), based on certain clustering problem formulations. These reformulations allow us to apply a generalisation with perturbations of the Weiszfeld algorithm in an attempt to find local approximate solutions to the euclidean TSP.},
author = {Valkonen, Tuomo, Kärkkäinen, Tommi},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {euclidean TSP; clustering; diff-convex; Weiszfeld algorithm},
language = {eng},
number = {4},
pages = {895-913},
publisher = {EDP-Sciences},
title = {Continuous reformulations and heuristics for the euclidean travelling salesperson problem},
url = {http://eudml.org/doc/246063},
volume = {15},
year = {2009},
}
TY - JOUR
AU - Valkonen, Tuomo
AU - Kärkkäinen, Tommi
TI - Continuous reformulations and heuristics for the euclidean travelling salesperson problem
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2009
PB - EDP-Sciences
VL - 15
IS - 4
SP - 895
EP - 913
AB - We consider continuous reformulations of the euclidean travelling salesperson problem (TSP), based on certain clustering problem formulations. These reformulations allow us to apply a generalisation with perturbations of the Weiszfeld algorithm in an attempt to find local approximate solutions to the euclidean TSP.
LA - eng
KW - euclidean TSP; clustering; diff-convex; Weiszfeld algorithm
UR - http://eudml.org/doc/246063
ER -
References
top- [1] D. Applegate, R. Bixby, V. Chavátal and W. Cook, On the solution of traveling salesman problems, in Doc. Math., Extra volume ICM 1998 III, Berlin (1998) 645–656. Zbl0904.90165MR1648194
- [2] S. Arora, Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45 (1998) 753–782. Zbl1064.90566MR1668147
- [3] S. Arora, Approximation schemes for NP-hard geometric optimization problems: a survey. Math. Program. 97 (2003) 43–69. Zbl1035.90113MR2004392
- [4] S. Arora, P. Raghavan and S. Rao, Approximation schemes for Euclidean -medians and related problems, in ACM Symposium on Theory of Computing (1998) 106–113. Zbl1027.68979MR1731569
- [5] H. Attouch and R.J.-B. Wets, Quantitative stability of variational systems: I. The epigraphical distance. Trans. Amer. Math. Soc. 328 (1991) 695–729. Zbl0753.49007MR1018570
- [6] H. Attouch and R.J.-B. Wets, Quantitative stability of variational systems: II. A framework for nonlinear conditioning. SIAM J. Optim. 3 (1993) 359–381. Zbl0793.49005MR1215448
- [7] S. Äyrämö, Knowledge Mining Using Robust Clustering. Jyväskylä Studies in Computing 63. University of Jyväskylä, Ph.D. thesis (2006).
- [8] J.J. Bentley, Fast algorithms for geometric traveling salesman problems. ORSA J. Comput. 4 (1992) 887–411. Zbl0758.90071MR1189076
- [9] G. Buttazzo and E. Stepanov, Minimization problems for average distance functionals, in Calculus of Variations: Topics from the Mathematical Heritage of Ennio De Giorgi, D. Pallara Ed., Quaderni di Matematica, Seconda Università di Napoli, Caserta 14 (2004) 47–83. Zbl1089.49040MR2118415
- [10] K. Helsgaun, An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126 (2000) 106–130. Zbl0969.90073MR1781609
- [11] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms I-II. Springer (1993). Zbl0795.49002MR1261420
- [12] R. Horst and P.M. Pardolos Eds., Handbook of Global Optimization. Kluwer Academic Publishers (1995). Zbl0805.00009MR1377081
- [13] D.S. Johnson and L.A. McGeoch, The traveling salesman problem: A case study in local optimization, in Local Search in Combinatorial Optimization, E. Aarts and J. Lenstra Eds., John Wiley and Sons (1997) 215–310. Zbl0947.90612MR1458637
- [14] D.S. Johnson and L.A. McGeoch, Experimental analysis of heuristics for the STSP, in The Traveling Salesman Problem and Its Variations, G. Gutin and A.P. Punnen Eds., Springer (2002) 369–443. Zbl1113.90356MR1944493
- [15] J.D. Litke, An improved solution to the traveling salesman problem with thousands of nodes. Commun. ACM 27 (1984) 1227–1236.
- [16] D.S. Mitrinović, Analytic Inequalities. Springer-Verlag (1970). Zbl0199.38101MR274686
- [17] S. Peyton Jones, Haskell 98 Language and Libraries: The Revised Report. Cambridge University Press (2003). Zbl1067.68041MR1989220
- [18] P. Polak and G. Wolansky, The lazy travelling salesman problem in . ESAIM: COCV 13 (2007) 538–552. Zbl1153.90014MR2329175
- [19] G. Reinelt, TSPLIB – A traveling salesman problem library. ORSA J. Comput. 3 (1991) 376–384. Zbl0775.90293
- [20] R.T. Rockafellar, Convex Analysis. Princeton University Press (1972). Zbl0193.18401MR1451876
- [21] R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Springer (1998). Zbl0888.49001MR1491362
- [22] T. Valkonen, Convergence of a SOR-Weiszfeld type algorithm for incomplete data sets. Numer. Funct. Anal. Optim. 27 (2006) 931–952. Zbl1112.90059MR2262549
- [23] T. Valkonen and T. Kärkkäinen, Clustering and the perturbed spatial median. Computer and Mathematical Modelling (submitted). Zbl1201.90126
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.