Optimal multiphase transportation with prescribed momentum

Yann Brenier; Marjolaine Puel

ESAIM: Control, Optimisation and Calculus of Variations (2002)

  • Volume: 8, page 287-343
  • ISSN: 1292-8119

Abstract

top
A multiphase generalization of the Monge–Kantorovich optimal transportation problem is addressed. Existence of optimal solutions is established. The optimality equations are related to classical Electrodynamics.

How to cite

top

Brenier, Yann, and Puel, Marjolaine. "Optimal multiphase transportation with prescribed momentum." ESAIM: Control, Optimisation and Calculus of Variations 8 (2002): 287-343. <http://eudml.org/doc/246090>.

@article{Brenier2002,
abstract = {A multiphase generalization of the Monge–Kantorovich optimal transportation problem is addressed. Existence of optimal solutions is established. The optimality equations are related to classical Electrodynamics.},
author = {Brenier, Yann, Puel, Marjolaine},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {optimal transportation; multiphase flow; electrodynamics; Monge-Kantorovich problem; optimal transportation problem},
language = {eng},
pages = {287-343},
publisher = {EDP-Sciences},
title = {Optimal multiphase transportation with prescribed momentum},
url = {http://eudml.org/doc/246090},
volume = {8},
year = {2002},
}

TY - JOUR
AU - Brenier, Yann
AU - Puel, Marjolaine
TI - Optimal multiphase transportation with prescribed momentum
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 8
SP - 287
EP - 343
AB - A multiphase generalization of the Monge–Kantorovich optimal transportation problem is addressed. Existence of optimal solutions is established. The optimality equations are related to classical Electrodynamics.
LA - eng
KW - optimal transportation; multiphase flow; electrodynamics; Monge-Kantorovich problem; optimal transportation problem
UR - http://eudml.org/doc/246090
ER -

References

top
  1. [1] F. Barthe, Optimal Young’s inequality and its converse: A simple proof. Geom. Funct. Anal. 8 (1998) 234-242. Zbl0902.26009
  2. [2] J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375-393. Zbl0968.76069
  3. [3] M. Born and L. Infeld, Foundations of the new field theory. Proc. Roy. Soc. London A 144 (1934) 425-451. Zbl0008.42203
  4. [4] G. Bouchitté and G. Buttazzo, Characterization of optimal shapes and masses through Monge–Kantorovich equation. J. Eur. Math. Soc. (JEMS) 3 (2001) 139-168. Zbl0982.49025
  5. [5] Y. Brenier, A combinatorial algorithm for the Euler equations of incompressible flows, in Proc. of the Eighth International Conference on Computing Methods in Applied Sciences and Engineering. Versailles (1987). Comput. Methods Appl. Mech. Engrg. 75 (1989) 325-332. Zbl0687.76016MR1035755
  6. [6] Y. Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs. C. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 805-808. Zbl0652.26017MR923203
  7. [7] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 64 (1991) 375-417. Zbl0738.46011MR1100809
  8. [8] Y. Brenier, A homogenized model for vortex sheets. Arch. Rational Mech. Anal. 138 (1997) 319-353. Zbl0962.35140MR1467558
  9. [9] Y. Brenier, Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations. Comm. Pure Appl. Math. 52 (1999) 411-452. Zbl0910.35098MR1658919
  10. [10] Y. Brenier, Extension of the Monge–Kantorovich theory to classical electrodynamics. Summer School on mass transportation methods in kinetic theory and hydrodynamics. Ponta Delgada, Azores, Portugal (2000). Zbl05269437
  11. [11] H. Brézis, Analyse fonctionnelle. Masson, Paris (1974). Zbl0511.46001MR697382
  12. [12] L.A. Caffarelli, Boundary regularity of maps with convex potentials. Ann. of Math. (2) 144 (1996) 453-496. Zbl0916.35016MR1426885
  13. [13] M.J. Cullen and R.J. Purser, An extended Lagrangian theory of semigeostrophic frontogenesis. J. Atmos. Sci. 41 (1984) 1477-1497. MR881109
  14. [14] L.C. Evans and W. Gangbo, Differential equations methods for the Monge–Kantorovich mass transfer problem. Mem. Amer. Math. Soc. 137 (1999). Zbl0920.49004
  15. [15] W. Gangbo and R.J. McCann, The geometry of optimal transportation. Acta Math. 177 (1996) 113-161. Zbl0887.49017MR1440931
  16. [16] D. Kinderlehrer, R. Jordan and F. Otto, The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29 (1998) 1-17. Zbl0915.35120
  17. [17] L.V. Kantorovich, On a problem of Monge. Uspekhi Mat. Nauk. 3 (1948) 225-226. 
  18. [18] R.J. McCann, A convexity principle for interacting gases. Adv. Math. 128 (1997) 153-179. Zbl0901.49012MR1451422
  19. [19] F. Otto, Viscous fingering: An optimal bound on the growth rate of the mixing zone. SIAM J. Appl. Math. 57 (1997) 982-990. Zbl0901.76082MR1462048
  20. [20] F. Otto, The geometry of dissipative evolution equations: The porous medium equation. Comm. Partial Differential Equations 26 (2001) 101-174 Zbl0984.35089MR1842429
  21. [21] F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173 (2000) 361-400. Zbl0985.58019MR1760620
  22. [22] A.V. Pogorelov, The Minkowski multidimensional problem. John Wiley, New York-Toronto-London, Scr. Ser. in Math. (1978). Zbl0387.53023MR478079
  23. [23] S.T. Rachev and L. Rüschendorf, Mass transportation problems, Vols. I and II. Probability and its Applications. Springer-Verlag. Zbl0990.60500MR1619170
  24. [24] G. Strang, Introduction to applied mathematics. Wellesley-Cambridge Press, Wellesley, MA (1986). Zbl0618.00015MR870634
  25. [25] V.N. Sudakov, Geometric problems in the theory of infinite-dimensional probability distributions. Proc. Steklov Inst. 141 (1979) 1-178. Zbl0409.60005MR530375

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.