A morphic approach to combinatorial games : the Tribonacci case

Eric Duchêne; Michel Rigo

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2008)

  • Volume: 42, Issue: 2, page 375-393
  • ISSN: 0988-3754

Abstract

top
We propose a variation of Wythoff’s game on three piles of tokens, in the sense that the losing positions can be derived from the Tribonacci word instead of the Fibonacci word for the two piles game. Thanks to the corresponding exotic numeration system built on the Tribonacci sequence, deciding whether a game position is losing or not can be computed in polynomial time.

How to cite

top

Duchêne, Eric, and Rigo, Michel. "A morphic approach to combinatorial games : the Tribonacci case." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 42.2 (2008): 375-393. <http://eudml.org/doc/246096>.

@article{Duchêne2008,
abstract = {We propose a variation of Wythoff’s game on three piles of tokens, in the sense that the losing positions can be derived from the Tribonacci word instead of the Fibonacci word for the two piles game. Thanks to the corresponding exotic numeration system built on the Tribonacci sequence, deciding whether a game position is losing or not can be computed in polynomial time.},
author = {Duchêne, Eric, Rigo, Michel},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {two-player combinatorial game; combinatorics on words; numeration system; Tribonacci sequence},
language = {eng},
number = {2},
pages = {375-393},
publisher = {EDP-Sciences},
title = {A morphic approach to combinatorial games : the Tribonacci case},
url = {http://eudml.org/doc/246096},
volume = {42},
year = {2008},
}

TY - JOUR
AU - Duchêne, Eric
AU - Rigo, Michel
TI - A morphic approach to combinatorial games : the Tribonacci case
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2008
PB - EDP-Sciences
VL - 42
IS - 2
SP - 375
EP - 393
AB - We propose a variation of Wythoff’s game on three piles of tokens, in the sense that the losing positions can be derived from the Tribonacci word instead of the Fibonacci word for the two piles game. Thanks to the corresponding exotic numeration system built on the Tribonacci sequence, deciding whether a game position is losing or not can be computed in polynomial time.
LA - eng
KW - two-player combinatorial game; combinatorics on words; numeration system; Tribonacci sequence
UR - http://eudml.org/doc/246096
ER -

References

top
  1. [1] E. Barcucci, L. Bélanger, S. Brlek, On Tribonacci sequences. Fibonacci Quart. 42 (2004) 314–319. Zbl1138.11309MR2110084
  2. [2] E.R. Berlekamp, J.H. Conway, R.K. Guy, Winning ways (two volumes). Academic Press, London (1982). 
  3. [3] M. Boshernitzan, A. Fraenkel, Nonhomogeneous spectra of numbers. Discrete Math. 34 (1981) 325–327. Zbl0456.10005MR613413
  4. [4] L. Carlitz, R. Scoville, V.E. Hoggatt Jr., Fibonacci representations of higher order. Fibonacci Quart. 10 (1972) 43–69. Zbl0236.05002MR304293
  5. [5] A. Cobham, Uniform tag sequences. Math. Syst. Theor. 6 (1972) 164–192. Zbl0253.02029MR457011
  6. [6] P. Fogg, Substitutions in dynamics, arithmetics and combinatorics, edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel. Lect. Notes Math. 1794, Springer-Verlag, Berlin (2002). Zbl1014.11015MR1970385
  7. [7] A. Fraenkel, I. Borosh, A generalization of Wythoff’s game. J. Combin. Theory Ser. A 15 (1973) 175–191. Zbl0265.90065MR339824
  8. [8] A. Fraenkel, How to beat your Wythoff games’ opponent on three fronts. Amer. Math. Monthly 89 (1982) 353–361. Zbl0504.90087MR660914
  9. [9] A. Fraenkel, Systems of numeration. Amer. Math. Monthly 92 (1985) 105–114. Zbl0568.10005MR777556
  10. [10] A. Fraenkel, Heap games, numeration systems and sequences. Ann. Comb. 2 (1998) 197–210. Zbl0942.91015MR1681514
  11. [11] A. Fraenkel, The Raleigh game, to appear in INTEGERS, Electron. J. Combin. Number Theor 7 (2007) A13. Zbl1178.91037MR2337047
  12. [12] A. Fraenkel, The rat game and the mouse game, preprint. Zbl06490904
  13. [13] M. Lothaire, Combinatorics on words. Cambridge Mathematical Library, Cambridge University Press, Cambridge (1997). Zbl0874.20040MR1475463
  14. [14] G. Rauzy, Nombres algébriques et substitutions. Bull. Soc. Math. France 110 (1982) 147–178. Zbl0522.10032MR667748
  15. [15] M. Rigo and A. Maes, More on generalized automatic sequences. J. Autom. Lang. Comb. 7 (2002) 351–376. Zbl1033.68069MR1957696
  16. [16] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, see http://www.research.att.com/~njas/sequences/ Zbl1274.11001
  17. [17] B. Tan, Z.-Y. Wen, Some properties of the Tribonacci sequence. Eur. J. Combin. 28 (2007) 1703–1719. Zbl1120.11009MR2339496
  18. [18] W.A. Webb, The length of the four-number game. Fibonacci Quart. 20 (1982) 33–35. Zbl0477.10021MR660757
  19. [19] W.A. Wythoff, A modification of the game of Nim. Nieuw Arch. Wisk. 7 (1907) 199–202. Zbl37.0261.03JFM37.0261.03
  20. [20] E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Sci. Liège 41 (1972) 179–182. Zbl0252.10011MR308032

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.