On the oscillation of third-order quasi-linear neutral functional differential equations
Ethiraju Thandapani; Tongxing Li
Archivum Mathematicum (2011)
- Volume: 047, Issue: 3, page 181-199
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topThandapani, Ethiraju, and Li, Tongxing. "On the oscillation of third-order quasi-linear neutral functional differential equations." Archivum Mathematicum 047.3 (2011): 181-199. <http://eudml.org/doc/246122>.
@article{Thandapani2011,
abstract = {The aim of this paper is to study asymptotic properties of the third-order quasi-linear neutral functional differential equation
\begin\{equation*\} \big [a(t)\big ([x(t)+p(t)x(\delta (t))]^\{\prime \prime \}\big )^\alpha \big ]^\{\prime \}+q(t)x^\alpha (\tau (t))=0\,, E \end\{equation*\}
where $\alpha >0$, $0\le p(t)\le p_0<\infty $ and $\delta (t)\le t$. By using Riccati transformation, we establish some sufficient conditions which ensure that every solution of () is either oscillatory or converges to zero. These results improve some known results in the literature. Two examples are given to illustrate the main results.},
author = {Thandapani, Ethiraju, Li, Tongxing},
journal = {Archivum Mathematicum},
keywords = {third-order; neutral functional differential equations; oscillation and asymptotic behavior; third-order neutral functional differential equation; oscillation; asymptotic behavior},
language = {eng},
number = {3},
pages = {181-199},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the oscillation of third-order quasi-linear neutral functional differential equations},
url = {http://eudml.org/doc/246122},
volume = {047},
year = {2011},
}
TY - JOUR
AU - Thandapani, Ethiraju
AU - Li, Tongxing
TI - On the oscillation of third-order quasi-linear neutral functional differential equations
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 3
SP - 181
EP - 199
AB - The aim of this paper is to study asymptotic properties of the third-order quasi-linear neutral functional differential equation
\begin{equation*} \big [a(t)\big ([x(t)+p(t)x(\delta (t))]^{\prime \prime }\big )^\alpha \big ]^{\prime }+q(t)x^\alpha (\tau (t))=0\,, E \end{equation*}
where $\alpha >0$, $0\le p(t)\le p_0<\infty $ and $\delta (t)\le t$. By using Riccati transformation, we establish some sufficient conditions which ensure that every solution of () is either oscillatory or converges to zero. These results improve some known results in the literature. Two examples are given to illustrate the main results.
LA - eng
KW - third-order; neutral functional differential equations; oscillation and asymptotic behavior; third-order neutral functional differential equation; oscillation; asymptotic behavior
UR - http://eudml.org/doc/246122
ER -
References
top- Baculíková, B., Džurina, J., Oscillation of third-order functional differential equations, Electron. J. Qual. Theory Differ. Equ. 43 (2010), 1–10. (2010) Zbl1211.34077MR2678385
- Baculíková, B., Džurina, J., 10.1016/j.mcm.2010.02.011, Math. Comput. Modelling 52 (2010), 215–226. (2010) Zbl1201.34097MR2645933DOI10.1016/j.mcm.2010.02.011
- Baculíková, B., Džurina, J., 10.1016/j.aml.2010.10.043, Appl. Math. Lett. 24 (2011), 466–470. (2011) Zbl1209.34042MR2749728DOI10.1016/j.aml.2010.10.043
- Baculíková, B., Elabbasy, E. M., Saker, S. H., Džurina, J., 10.2478/s12175-008-0068-1, Math. Slovaca 58 (2008), 1–20. (2008) Zbl1174.34052MR2391214DOI10.2478/s12175-008-0068-1
- Erbe, L., 10.2140/pjm.1976.64.369, Pacific J. Math. 64 (1976), 369–385. (1976) Zbl0339.34030MR0435508DOI10.2140/pjm.1976.64.369
- Grace, S. R., Agarwal, R. P., Pavani, R., Thandapani, E., 10.1016/j.amc.2008.01.025, Appl. Math. Comput. 202 (2008), 102–112. (2008) MR2437140DOI10.1016/j.amc.2008.01.025
- Han, Z., Li, T., Zhang, C., Sun, S., An oscillation criterion for third order neutral delay differential equations, J. Appl. Anal., to appear. MR2740504
- Hanan, M., 10.2140/pjm.1961.11.919, Pacific J. Math. 11 (1961), 919–944. (1961) MR0145160DOI10.2140/pjm.1961.11.919
- Hartman, P., Winter, A., 10.2307/2372548, Amer. J. Math. 75 (1953), 731–743. (1953) MR0057404DOI10.2307/2372548
- Karpuz, B., Öcalan, Ö., Öztürk, S., 10.1017/S0017089509990188, Glasgow Math. J. 52 (2010), 107–114. (2010) MR2587820DOI10.1017/S0017089509990188
- Philos, Ch. G., 10.1007/BF01324723, Arch. Math. 53 (1989), 482–492. (1989) Zbl0661.34030MR1019162DOI10.1007/BF01324723
- Saker, S. H., Džurina, J., On the oscillation of certain class of third-order nonlinear delay differential equations, Math. Bohem. 135 (2010), 225–237. (2010) Zbl1224.34217MR2683636
- Zhong, J., Ouyang, Z., Zou, S., Oscillation criteria for a class of third-order nonlinear neutral differential equations, J. Appl. Anal. (2010), to appear.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.