A continuous operator extending fuzzy ultrametrics
I. Stasyuk; Edward D. Tymchatyn
Commentationes Mathematicae Universitatis Carolinae (2011)
- Volume: 52, Issue: 4, page 611-622
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topStasyuk, I., and Tymchatyn, Edward D.. "A continuous operator extending fuzzy ultrametrics." Commentationes Mathematicae Universitatis Carolinae 52.4 (2011): 611-622. <http://eudml.org/doc/246123>.
@article{Stasyuk2011,
abstract = {We consider the problem of simultaneous extension of fuzzy ultrametrics defined on closed subsets of a complete fuzzy ultrametric space. We construct an extension operator that preserves the operation of pointwise minimum of fuzzy ultrametrics with common domain and an operation which is an analogue of multiplication by a constant defined for fuzzy ultrametrics. We prove that the restriction of the extension operator onto the set of continuous, partial fuzzy ultrametrics is continuous with respect to the Hausdorff metric topology.},
author = {Stasyuk, I., Tymchatyn, Edward D.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {fuzzy ultrametric; continuous extension operator; Hausdorff metric; fuzzy ultrametric; continuous extension operator; Hausdorff metric},
language = {eng},
number = {4},
pages = {611-622},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A continuous operator extending fuzzy ultrametrics},
url = {http://eudml.org/doc/246123},
volume = {52},
year = {2011},
}
TY - JOUR
AU - Stasyuk, I.
AU - Tymchatyn, Edward D.
TI - A continuous operator extending fuzzy ultrametrics
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 4
SP - 611
EP - 622
AB - We consider the problem of simultaneous extension of fuzzy ultrametrics defined on closed subsets of a complete fuzzy ultrametric space. We construct an extension operator that preserves the operation of pointwise minimum of fuzzy ultrametrics with common domain and an operation which is an analogue of multiplication by a constant defined for fuzzy ultrametrics. We prove that the restriction of the extension operator onto the set of continuous, partial fuzzy ultrametrics is continuous with respect to the Hausdorff metric topology.
LA - eng
KW - fuzzy ultrametric; continuous extension operator; Hausdorff metric; fuzzy ultrametric; continuous extension operator; Hausdorff metric
UR - http://eudml.org/doc/246123
ER -
References
top- Banakh T., –spaces and regular operators extending (averaging) pseudometrics, Bull. Polish Acad. Sci. Math. 42 (1994), no. 3, 197–206. MR1811849
- Bessaga C., On linear operators and functors extending pseudometrics, Fund. Math. 142 (1993), no. 2, 101-122. Zbl0847.54033MR1211761
- Beer G., Topologies on Closed and Closed Convex Sets, Kluwer Academic, Dordrecht, 1993. Zbl0792.54008MR1269778
- George A., Veeramani P., On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems 90 (1997), 365–368. Zbl0917.54010MR1477836
- Gregori V., Morillas S., Sapena A., On a class of completable fuzzy metric spaces, Fuzzy Sets and Systems 161 (2010), 2193–2205. Zbl1201.54011MR2652720
- de Groot J., 10.1090/S0002-9939-1956-0080905-8, Proc. Amer. Math. Soc. 7 (1956), 948–953. Zbl0072.40201MR0080905DOI10.1090/S0002-9939-1956-0080905-8
- Hausdorff F., Erweiterung einer Homöomorphie, Fund. Math. 16 (1930), 353–360.
- Künzi H.P., Shapiro L.B., 10.1090/S0002-9939-97-04011-2, Proc. Amer. Math. Soc. 125 (1997), 1853–1859. MR1415348DOI10.1090/S0002-9939-97-04011-2
- Miheţ D., 10.1016/j.fss.2007.07.006, Fuzzy Sets and Systems 159 (2008), no. 6, 739–744. MR2410532DOI10.1016/j.fss.2007.07.006
- Narici L., Beckenstein E., Topological vector spaces, Pure and Applied Mathematics, 95, Marcel Dekker, New York-Basel, 1985. Zbl1219.46001MR0812056
- Pikhurko O., Extending metrics in compact pairs, Mat. Stud. 3 (1994), 103–106. Zbl0927.54029MR1692801
- Repovš D., Savchenko A., Zarichnyi M., Fuzzy Prokhorov metric on the set of probability measures, Fuzzy Sets and Systems 175 (2011), 96–104. MR2803416
- Savchenko A., Extension of fuzzy metrics, Carpathian Mathematical Publications 2 (2010), no. 2, 111–115 (in Ukrainian). Zbl1224.54020
- Savchenko A., Zarichnyi M., 10.1016/j.top.2009.11.011, Topology 48 (2009), 130–136. Zbl1191.54008MR2596207DOI10.1016/j.top.2009.11.011
- Stasyuk I., Tymchatyn E.D., A continuous operator extending ultrametrics, Comment. Math. Univ. Carolin. 50 (2009), no. 1, 141–151. Zbl1212.54091MR2562811
- Stasyuk I., Tymchatyn E.D., On continuous linear operators extending metrics, submitted to Proc. Amer. Math. Soc.
- Tymchatyn E.D., Zarichnyi M., 10.1090/S0002-9939-04-07413-1, Proc. Amer. Math. Soc. 132 (2004), 2799–2807. Zbl1050.54011MR2054807DOI10.1090/S0002-9939-04-07413-1
- Tymchatyn E.D., Zarichnyi M., A note on operators extending partial ultrametrics, Comment. Math. Univ. Carolin. 46 (2005), no. 3, 515–524. Zbl1121.54045MR2174529
- Zarichnyi M., Regular linear operators extending metrics: a short proof, Bull. Polish Acad. Sci. Math. 44 (1996), no. 3, 267–269. Zbl0866.54017MR1419399
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.