A note on operators extending partial ultrametrics
Edward D. Tymchatyn; Michael M. Zarichnyi
Commentationes Mathematicae Universitatis Carolinae (2005)
- Volume: 46, Issue: 3, page 515-524
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topTymchatyn, Edward D., and Zarichnyi, Michael M.. "A note on operators extending partial ultrametrics." Commentationes Mathematicae Universitatis Carolinae 46.3 (2005): 515-524. <http://eudml.org/doc/249559>.
@article{Tymchatyn2005,
abstract = {We consider the question of simultaneous extension of partial ultrametrics, i.e. continuous ultrametrics defined on nonempty closed subsets of a compact zero-dimensional metrizable space. The main result states that there exists a continuous extension operator that preserves the maximum operation. This extension can also be chosen so that it preserves the Assouad dimension.},
author = {Tymchatyn, Edward D., Zarichnyi, Michael M.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {partial ultrametric; extension operator; Assouad dimension; extension operator; Assouad dimension},
language = {eng},
number = {3},
pages = {515-524},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A note on operators extending partial ultrametrics},
url = {http://eudml.org/doc/249559},
volume = {46},
year = {2005},
}
TY - JOUR
AU - Tymchatyn, Edward D.
AU - Zarichnyi, Michael M.
TI - A note on operators extending partial ultrametrics
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2005
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 46
IS - 3
SP - 515
EP - 524
AB - We consider the question of simultaneous extension of partial ultrametrics, i.e. continuous ultrametrics defined on nonempty closed subsets of a compact zero-dimensional metrizable space. The main result states that there exists a continuous extension operator that preserves the maximum operation. This extension can also be chosen so that it preserves the Assouad dimension.
LA - eng
KW - partial ultrametric; extension operator; Assouad dimension; extension operator; Assouad dimension
UR - http://eudml.org/doc/249559
ER -
References
top- Assouad P., Sur la distance de Nagata, C.R. Acad. Sci. Paris Sér. I Math. 294 (1982), 1 31-34. (1982) Zbl0481.54015MR0651069
- Assouad P., Plongements lipschitziens dans , Bull. Soc. Math. France 111 (1983), 429-448. (1983) MR0763553
- Banakh T., On linear operators extending (pseudo)metrics, preprint. Zbl0948.54021
- Banakh T., AE(0)-spaces and regular operators extending (averaging) pseudometrics, Bull. Polish Acad. Sci. Math 42 (1994), 3 197-206. (1994) Zbl0827.54010MR1811849
- Banakh T., Bessaga C., On linear operators extending pseudometrics, Bull. Polish Acad. Sci. Math. 48 (2000), 1 35-49. (2000) Zbl0948.54021MR1751152
- Bessaga C., On linear operators and functors extending pseudometrics, Fund. Math. 142 (1993), 2 101-122. (1993) Zbl0847.54033MR1211761
- Bessaga C., Functional analytic aspects of geometry. Linear extending of metrics and related problems, Progress in functional analysis (Pe níscola, 1990), 247-257, North-Holland Math. Stud., 170, North-Holland, Amsterdam, 1992. Zbl0771.54027MR1150751
- Engelking R., General Topology, PWN, Warsaw, 1977. Zbl0684.54001MR0500780
- Filippov V.V., Topological structure of solution spaces of ordinary differential equations (in Russian), Uspekhi Mat. Nauk 48 (1993), 103-154. (1993) MR1227948
- de Groot J., Non-archimedean metrics in topology, Proc. Amer. Math. Soc. 7 (1956), 948-953. (1956) Zbl0072.40201MR0080905
- Künzi H.-P., Shapiro L.B., On simultaneous extension of continuous partial functions, Proc. Amer. Math. Soc. 125 (1997), 1853-1859. (1997) MR1415348
- Kuratowski K., Sur l'espace des fonctions partielles, Ann. Mat. Pura Appl. 40 (1955), 61-67. (1955) Zbl0065.34303MR0074807
- Kuratowski K., Sur une méthode de métrisation complète de certains espaces d'ensembles compacts, Fund. Math. 43 (1956), 114-138. (1956) Zbl0071.38402MR0079258
- Luosto K., Ultrametric spaces bi-Lipschitz embeddable in , Fund. Math. 150 (1996), 1 25-42. (1996) MR1387955
- Luukkainen J., Assouad dimension: antifractal metrization, porous sets, and homogeneous measures, J. Korean Math. Soc. 35 (1998), 1 23-76. (1998) Zbl0893.54029MR1608518
- Luukkainen J., Movahedi-Lankarani H., Minimal bi-Lipschitz embedding dimension of ultrametric spaces, Fund. Math. 144 (1994), 2 181-193. (1994) Zbl0807.54025MR1273695
- Michael E., Continuous selections. II, Ann. of Math. (2) 64 (1956), 562-580. (1956) Zbl0073.17702MR0080909
- Nadler S.B., Hyperspaces of Sets, Marcel Dekker, New York and Basel, 1978. Zbl1125.54001MR0500811
- Pikhurko O., Extending metrics in compact pairs, Mat. Stud. 3 (1994), 103-106, 122. (1994) Zbl0927.54029MR1692801
- Stepanova E.N., Continuation of continuous functions and the metrizability of paracompact -spaces (in Russian), Mat. Zametki 53 (1993), 3 92-101; translation in Math. Notes 53 (1993), no. 3-4, 308-314. (1993) MR1220188
- Tymchatyn E.D., Zarichnyi M., On simultaneous linear extensions of partial (pseudo)metrics, Proc. Amer. Math. Soc. 132 9 (2004), 2799-2807. (2004) Zbl1050.54011MR2054807
- Priess-Crampe S., Ribenboim P., Generalized ultrametric spaces. I, Abh. Math. Sem. Univ. Hamburg 66 (1996), 55-73. (1996) Zbl0922.54028MR1418219
- Zarichnyi M., Regular linear operators extending metrics: a short proof, Bull. Polish Acad. Sci. Math. 44 (1996), 3 267-269. (1996) Zbl0866.54017MR1419399
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.