A note on operators extending partial ultrametrics

Edward D. Tymchatyn; Michael M. Zarichnyi

Commentationes Mathematicae Universitatis Carolinae (2005)

  • Volume: 46, Issue: 3, page 515-524
  • ISSN: 0010-2628

Abstract

top
We consider the question of simultaneous extension of partial ultrametrics, i.e. continuous ultrametrics defined on nonempty closed subsets of a compact zero-dimensional metrizable space. The main result states that there exists a continuous extension operator that preserves the maximum operation. This extension can also be chosen so that it preserves the Assouad dimension.

How to cite

top

Tymchatyn, Edward D., and Zarichnyi, Michael M.. "A note on operators extending partial ultrametrics." Commentationes Mathematicae Universitatis Carolinae 46.3 (2005): 515-524. <http://eudml.org/doc/249559>.

@article{Tymchatyn2005,
abstract = {We consider the question of simultaneous extension of partial ultrametrics, i.e. continuous ultrametrics defined on nonempty closed subsets of a compact zero-dimensional metrizable space. The main result states that there exists a continuous extension operator that preserves the maximum operation. This extension can also be chosen so that it preserves the Assouad dimension.},
author = {Tymchatyn, Edward D., Zarichnyi, Michael M.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {partial ultrametric; extension operator; Assouad dimension; extension operator; Assouad dimension},
language = {eng},
number = {3},
pages = {515-524},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A note on operators extending partial ultrametrics},
url = {http://eudml.org/doc/249559},
volume = {46},
year = {2005},
}

TY - JOUR
AU - Tymchatyn, Edward D.
AU - Zarichnyi, Michael M.
TI - A note on operators extending partial ultrametrics
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2005
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 46
IS - 3
SP - 515
EP - 524
AB - We consider the question of simultaneous extension of partial ultrametrics, i.e. continuous ultrametrics defined on nonempty closed subsets of a compact zero-dimensional metrizable space. The main result states that there exists a continuous extension operator that preserves the maximum operation. This extension can also be chosen so that it preserves the Assouad dimension.
LA - eng
KW - partial ultrametric; extension operator; Assouad dimension; extension operator; Assouad dimension
UR - http://eudml.org/doc/249559
ER -

References

top
  1. Assouad P., Sur la distance de Nagata, C.R. Acad. Sci. Paris Sér. I Math. 294 (1982), 1 31-34. (1982) Zbl0481.54015MR0651069
  2. Assouad P., Plongements lipschitziens dans n , Bull. Soc. Math. France 111 (1983), 429-448. (1983) MR0763553
  3. Banakh T., On linear operators extending (pseudo)metrics, preprint. Zbl0948.54021
  4. Banakh T., AE(0)-spaces and regular operators extending (averaging) pseudometrics, Bull. Polish Acad. Sci. Math 42 (1994), 3 197-206. (1994) Zbl0827.54010MR1811849
  5. Banakh T., Bessaga C., On linear operators extending [ pseudo ] metrics, Bull. Polish Acad. Sci. Math. 48 (2000), 1 35-49. (2000) Zbl0948.54021MR1751152
  6. Bessaga C., On linear operators and functors extending pseudometrics, Fund. Math. 142 (1993), 2 101-122. (1993) Zbl0847.54033MR1211761
  7. Bessaga C., Functional analytic aspects of geometry. Linear extending of metrics and related problems, Progress in functional analysis (Pe níscola, 1990), 247-257, North-Holland Math. Stud., 170, North-Holland, Amsterdam, 1992. Zbl0771.54027MR1150751
  8. Engelking R., General Topology, PWN, Warsaw, 1977. Zbl0684.54001MR0500780
  9. Filippov V.V., Topological structure of solution spaces of ordinary differential equations (in Russian), Uspekhi Mat. Nauk 48 (1993), 103-154. (1993) MR1227948
  10. de Groot J., Non-archimedean metrics in topology, Proc. Amer. Math. Soc. 7 (1956), 948-953. (1956) Zbl0072.40201MR0080905
  11. Künzi H.-P., Shapiro L.B., On simultaneous extension of continuous partial functions, Proc. Amer. Math. Soc. 125 (1997), 1853-1859. (1997) MR1415348
  12. Kuratowski K., Sur l'espace des fonctions partielles, Ann. Mat. Pura Appl. 40 (1955), 61-67. (1955) Zbl0065.34303MR0074807
  13. Kuratowski K., Sur une méthode de métrisation complète de certains espaces d'ensembles compacts, Fund. Math. 43 (1956), 114-138. (1956) Zbl0071.38402MR0079258
  14. Luosto K., Ultrametric spaces bi-Lipschitz embeddable in 𝐑 n , Fund. Math. 150 (1996), 1 25-42. (1996) MR1387955
  15. Luukkainen J., Assouad dimension: antifractal metrization, porous sets, and homogeneous measures, J. Korean Math. Soc. 35 (1998), 1 23-76. (1998) Zbl0893.54029MR1608518
  16. Luukkainen J., Movahedi-Lankarani H., Minimal bi-Lipschitz embedding dimension of ultrametric spaces, Fund. Math. 144 (1994), 2 181-193. (1994) Zbl0807.54025MR1273695
  17. Michael E., Continuous selections. II, Ann. of Math. (2) 64 (1956), 562-580. (1956) Zbl0073.17702MR0080909
  18. Nadler S.B., Hyperspaces of Sets, Marcel Dekker, New York and Basel, 1978. Zbl1125.54001MR0500811
  19. Pikhurko O., Extending metrics in compact pairs, Mat. Stud. 3 (1994), 103-106, 122. (1994) Zbl0927.54029MR1692801
  20. Stepanova E.N., Continuation of continuous functions and the metrizability of paracompact p -spaces (in Russian), Mat. Zametki 53 (1993), 3 92-101; translation in Math. Notes 53 (1993), no. 3-4, 308-314. (1993) MR1220188
  21. Tymchatyn E.D., Zarichnyi M., On simultaneous linear extensions of partial (pseudo)metrics, Proc. Amer. Math. Soc. 132 9 (2004), 2799-2807. (2004) Zbl1050.54011MR2054807
  22. Priess-Crampe S., Ribenboim P., Generalized ultrametric spaces. I, Abh. Math. Sem. Univ. Hamburg 66 (1996), 55-73. (1996) Zbl0922.54028MR1418219
  23. Zarichnyi M., Regular linear operators extending metrics: a short proof, Bull. Polish Acad. Sci. Math. 44 (1996), 3 267-269. (1996) Zbl0866.54017MR1419399

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.