Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow
Sahbi Boussandel; Ralph Chill; Eva Fašangová
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 2, page 335-346
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBoussandel, Sahbi, Chill, Ralph, and Fašangová, Eva. "Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow." Czechoslovak Mathematical Journal 62.2 (2012): 335-346. <http://eudml.org/doc/246132>.
@article{Boussandel2012,
abstract = {Local well-posedness of the curve shortening flow, that is, local existence, uniqueness and smooth dependence of solutions on initial data, is proved by applying the Local Inverse Function Theorem and $L^2$-maximal regularity results for linear parabolic equations. The application of the Local Inverse Function Theorem leads to a particularly short proof which gives in addition the space-time regularity of the solutions. The method may be applied to general nonlinear evolution equations, but is presented in the special situation only.},
author = {Boussandel, Sahbi, Chill, Ralph, Fašangová, Eva},
journal = {Czechoslovak Mathematical Journal},
keywords = {curve shortening flow; maximal regularity; local inverse function theorem; curve shortening flow; maximal regularity; local inverse function theorem},
language = {eng},
number = {2},
pages = {335-346},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow},
url = {http://eudml.org/doc/246132},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Boussandel, Sahbi
AU - Chill, Ralph
AU - Fašangová, Eva
TI - Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 2
SP - 335
EP - 346
AB - Local well-posedness of the curve shortening flow, that is, local existence, uniqueness and smooth dependence of solutions on initial data, is proved by applying the Local Inverse Function Theorem and $L^2$-maximal regularity results for linear parabolic equations. The application of the Local Inverse Function Theorem leads to a particularly short proof which gives in addition the space-time regularity of the solutions. The method may be applied to general nonlinear evolution equations, but is presented in the special situation only.
LA - eng
KW - curve shortening flow; maximal regularity; local inverse function theorem; curve shortening flow; maximal regularity; local inverse function theorem
UR - http://eudml.org/doc/246132
ER -
References
top- Almgren, F., Taylor, J. E., Wang, L., 10.1137/0331020, SIAM J. Control Optimization 31 (1993), 387-438. (1993) Zbl0783.35002MR1205983DOI10.1137/0331020
- Amann, H., 10.1515/ans-2004-0404, Adv. Nonlinear Stud. 4 (2004), 417-430. (2004) Zbl1072.35103MR2100906DOI10.1515/ans-2004-0404
- Amann, H., Maximal regularity and quasilinear parabolic boundary value problems, Recent advances in elliptic and parabolic problems. Hackensack, NJ: World Scientific (2005), 1-17. (2005) Zbl1144.35034MR2172562
- Amann, H., Quasilinear parabolic problems via maximal regularity, Adv. Differ. Equ. 10 (2005), 1081-1110. (2005) Zbl1103.35059MR2162362
- Amann, H., Existence and regularity for semilinear parabolic evolution equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 11 (1984), 593-676. (1984) Zbl0625.35045MR0808425
- Amann, H., 10.1090/S0002-9947-1986-0814920-4, Trans. Am. Math. Soc. 293 (1986), 191-227. (1986) Zbl0635.47056MR0814920DOI10.1090/S0002-9947-1986-0814920-4
- Angenent, S. B., 10.1017/S0308210500024598, Proc. R. Soc. Edinb., Sect. A 115 (1990), 91-107. (1990) Zbl0723.34047MR1059647DOI10.1017/S0308210500024598
- Angenent, S. B., Parabolic equations for curves on surfaces I. Curves with -integrable curvature, Ann. Math. (2) 132 (1990), 451-483. (1990) Zbl0789.58070MR1078266
- Arendt, W., Chill, R., Fornaro, S., Poupaud, C., 10.1016/j.jde.2007.02.010, J. Differ. Equations 237 (2007), 1-26. (2007) MR2327725DOI10.1016/j.jde.2007.02.010
- Bothe, D., Prüss, J., 10.1137/060663635, SIAM J. Math. Anal. 39 (2007), 379-421. (2007) Zbl1172.35052MR2338412DOI10.1137/060663635
- Brakke, K. A., The Motion of a Surface by its Mean Curvature, Princeton, New Jersey: Princeton University Press. Tokyo: University of Tokyo Press (1978). (1978) Zbl0386.53047MR0485012
- Chou, K.-S., Zhu, X.-P., The Curve Shortening Problem, Boca Raton, FL: Chapman & Hall/CRC. ix (2001). (2001) Zbl1061.53045MR1888641
- Clément, P., Li, S., Abstract parabolic quasilinear equations and application to a groundwater flow problem, Adv. Math. Sci. Appl. 3 (1994), 17-32. (1994) Zbl0811.35040MR1287921
- Prato, G. Da, Grisvard, P., 10.1007/BF02411952, Ann. Mat. Pura Appl., IV. Ser. 120 (1979), 329-396 French. (1979) Zbl0471.35036MR0551075DOI10.1007/BF02411952
- Simon, L. De, Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine, Rend. Sem. Mat. Univ. Padova 34 (1964), 205-223 Italian. (1964) Zbl0196.44803MR0176192
- Deckelnick, K., 10.1007/s005260050076, Calc. Var. Partial Differ. Equ. 5 (1997), 489-510. (1997) Zbl0990.35076MR1473305DOI10.1007/s005260050076
- Deckelnick, K., Dziuk, G., Elliott, C. M., 10.1017/S0962492904000224, Acta Numerica 14 (2005), 139-232. (2005) Zbl1113.65097MR2168343DOI10.1017/S0962492904000224
- DeTurck, D. M., 10.4310/jdg/1214509286, J. Differ. Geom. 18 (1983), 157-162. (1983) Zbl0517.53044MR0697987DOI10.4310/jdg/1214509286
- Ecker, K., Regularity Theory for Mean Curvature Flow, Progress in Nonlinear Differential Equations and Their Applications 57. Boston, MA: Birkhäuser (2004). (2004) Zbl1058.53054MR2024995
- Escher, J., Prüss, J., Simonett, G., A new approach to the regularity of solutions for parabolic equations, Evolution Equations. Proceedings in honor of the 60th birthdays of P. Bénilan, J. A. Goldstein and R. Nagel. New York, NY: Marcel Dekker. Lect. Notes Pure Appl. Math. 234 (2003), 167-190. (2003) Zbl1070.35009MR2073744
- Giga, Y., Surface Evolution Equations. A level set approach, Monographs in Mathematics 99. Basel: Birkhäuser (2006). (2006) Zbl1096.53039MR2238463
- Guidetti, D., A maximal regularity result with applications to parabolic problems with nonhomogeneous boundary conditions, Rend. Semin. Mat. Univ. Padova 84 (1990), 1-37 (1991). (1991) MR1101280
- Hieber, M., Rehberg, J., 10.1137/070683829, SIAM J. Math. Anal. 40 (2008), 292-305. (2008) Zbl1221.35194MR2403322DOI10.1137/070683829
- Huisken, G., Polden, A., Geometric evolution equations for hypersurfaces, Calculus of variations and geometric evolution problems. (Cetraro, 1996), Berlin: Springer. Lect. Notes Math. 1713 (1999), 45-84. (1999) Zbl0942.35047MR1731639
- Ladyženskaja, O. A., Solonnikov, V. A., Ural'ceva, N. N., Linear and Quasilinear Equations of Parabolic Type, Moskva: Izdat. `Nauka' (1967), Russian. (1967) MR0241822
- Luckhaus, S., Sturzenhecker, T., 10.1007/BF01205007, Calc. Var. Partial Differ. Equ. 3 (1995), 253-271. (1995) Zbl0821.35003MR1386964DOI10.1007/BF01205007
- Lunardi, A., Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and their Applications. 16. Basel: Birkhäuser (1995). (1995) Zbl0816.35001MR1329547
- Lunardi, A., Interpolation Theory. 2nd ed, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) 9. Pisa: Edizioni della Normale (2009). (2009) Zbl1171.41001MR2523200
- Mikula, K., Ševčovič, D., 10.1007/s00791-004-0131-6, Comput. Vis. Sci. 6 (2004), 211-225. (2004) MR2071441DOI10.1007/s00791-004-0131-6
- Prüss, J., Schnaubelt, R., 10.1006/jmaa.2000.7247, J. Math. Anal. Appl. 256 (2001), 405-430. (2001) Zbl0994.35076MR1821747DOI10.1006/jmaa.2000.7247
- Prüss, J., Maximal regularity for evolution equations in -spaces, Conf. Semin. Mat. Univ. Bari (2002), 1-39 (2003). (2003) MR1988408
- Saal, J., Strong solutions for the Navier-Stokes equations on bounded and unbounded domains with a moving boundary, Electron. J. Differ. Equ., Conf. 15 (2007), 365-375. (2007) MR2316145
- Simonett, G., The Willmore flow near spheres, Differ. Integral Equ. 14 (2001), 1005-1014. (2001) Zbl1161.35429MR1827100
- Zeidler, E., Nonlinear Functional Analysis and its Applications. Volume I: Fixed-point theorems. Translated from the German by Peter R. Wadsack, New York: Springer-Verlag (1993). (1993) Zbl0794.47033MR0816732
- Zhu, X.-P., Lectures on Mean Curvature Flows, AMS/IP Studies in Advanced Mathematics 32. Providence, RI: American Mathematical Society (AMS), Somerville: International Press (2002). (2002) Zbl1197.53087MR1931534
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.