Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow

Sahbi Boussandel; Ralph Chill; Eva Fašangová

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 2, page 335-346
  • ISSN: 0011-4642

Abstract

top
Local well-posedness of the curve shortening flow, that is, local existence, uniqueness and smooth dependence of solutions on initial data, is proved by applying the Local Inverse Function Theorem and L 2 -maximal regularity results for linear parabolic equations. The application of the Local Inverse Function Theorem leads to a particularly short proof which gives in addition the space-time regularity of the solutions. The method may be applied to general nonlinear evolution equations, but is presented in the special situation only.

How to cite

top

Boussandel, Sahbi, Chill, Ralph, and Fašangová, Eva. "Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow." Czechoslovak Mathematical Journal 62.2 (2012): 335-346. <http://eudml.org/doc/246132>.

@article{Boussandel2012,
abstract = {Local well-posedness of the curve shortening flow, that is, local existence, uniqueness and smooth dependence of solutions on initial data, is proved by applying the Local Inverse Function Theorem and $L^2$-maximal regularity results for linear parabolic equations. The application of the Local Inverse Function Theorem leads to a particularly short proof which gives in addition the space-time regularity of the solutions. The method may be applied to general nonlinear evolution equations, but is presented in the special situation only.},
author = {Boussandel, Sahbi, Chill, Ralph, Fašangová, Eva},
journal = {Czechoslovak Mathematical Journal},
keywords = {curve shortening flow; maximal regularity; local inverse function theorem; curve shortening flow; maximal regularity; local inverse function theorem},
language = {eng},
number = {2},
pages = {335-346},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow},
url = {http://eudml.org/doc/246132},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Boussandel, Sahbi
AU - Chill, Ralph
AU - Fašangová, Eva
TI - Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 2
SP - 335
EP - 346
AB - Local well-posedness of the curve shortening flow, that is, local existence, uniqueness and smooth dependence of solutions on initial data, is proved by applying the Local Inverse Function Theorem and $L^2$-maximal regularity results for linear parabolic equations. The application of the Local Inverse Function Theorem leads to a particularly short proof which gives in addition the space-time regularity of the solutions. The method may be applied to general nonlinear evolution equations, but is presented in the special situation only.
LA - eng
KW - curve shortening flow; maximal regularity; local inverse function theorem; curve shortening flow; maximal regularity; local inverse function theorem
UR - http://eudml.org/doc/246132
ER -

References

top
  1. Almgren, F., Taylor, J. E., Wang, L., 10.1137/0331020, SIAM J. Control Optimization 31 (1993), 387-438. (1993) Zbl0783.35002MR1205983DOI10.1137/0331020
  2. Amann, H., 10.1515/ans-2004-0404, Adv. Nonlinear Stud. 4 (2004), 417-430. (2004) Zbl1072.35103MR2100906DOI10.1515/ans-2004-0404
  3. Amann, H., Maximal regularity and quasilinear parabolic boundary value problems, Recent advances in elliptic and parabolic problems. Hackensack, NJ: World Scientific (2005), 1-17. (2005) Zbl1144.35034MR2172562
  4. Amann, H., Quasilinear parabolic problems via maximal regularity, Adv. Differ. Equ. 10 (2005), 1081-1110. (2005) Zbl1103.35059MR2162362
  5. Amann, H., Existence and regularity for semilinear parabolic evolution equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 11 (1984), 593-676. (1984) Zbl0625.35045MR0808425
  6. Amann, H., 10.1090/S0002-9947-1986-0814920-4, Trans. Am. Math. Soc. 293 (1986), 191-227. (1986) Zbl0635.47056MR0814920DOI10.1090/S0002-9947-1986-0814920-4
  7. Angenent, S. B., 10.1017/S0308210500024598, Proc. R. Soc. Edinb., Sect. A 115 (1990), 91-107. (1990) Zbl0723.34047MR1059647DOI10.1017/S0308210500024598
  8. Angenent, S. B., Parabolic equations for curves on surfaces I. Curves with p -integrable curvature, Ann. Math. (2) 132 (1990), 451-483. (1990) Zbl0789.58070MR1078266
  9. Arendt, W., Chill, R., Fornaro, S., Poupaud, C., 10.1016/j.jde.2007.02.010, J. Differ. Equations 237 (2007), 1-26. (2007) MR2327725DOI10.1016/j.jde.2007.02.010
  10. Bothe, D., Prüss, J., 10.1137/060663635, SIAM J. Math. Anal. 39 (2007), 379-421. (2007) Zbl1172.35052MR2338412DOI10.1137/060663635
  11. Brakke, K. A., The Motion of a Surface by its Mean Curvature, Princeton, New Jersey: Princeton University Press. Tokyo: University of Tokyo Press (1978). (1978) Zbl0386.53047MR0485012
  12. Chou, K.-S., Zhu, X.-P., The Curve Shortening Problem, Boca Raton, FL: Chapman & Hall/CRC. ix (2001). (2001) Zbl1061.53045MR1888641
  13. Clément, P., Li, S., Abstract parabolic quasilinear equations and application to a groundwater flow problem, Adv. Math. Sci. Appl. 3 (1994), 17-32. (1994) Zbl0811.35040MR1287921
  14. Prato, G. Da, Grisvard, P., 10.1007/BF02411952, Ann. Mat. Pura Appl., IV. Ser. 120 (1979), 329-396 French. (1979) Zbl0471.35036MR0551075DOI10.1007/BF02411952
  15. Simon, L. De, Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine, Rend. Sem. Mat. Univ. Padova 34 (1964), 205-223 Italian. (1964) Zbl0196.44803MR0176192
  16. Deckelnick, K., 10.1007/s005260050076, Calc. Var. Partial Differ. Equ. 5 (1997), 489-510. (1997) Zbl0990.35076MR1473305DOI10.1007/s005260050076
  17. Deckelnick, K., Dziuk, G., Elliott, C. M., 10.1017/S0962492904000224, Acta Numerica 14 (2005), 139-232. (2005) Zbl1113.65097MR2168343DOI10.1017/S0962492904000224
  18. DeTurck, D. M., 10.4310/jdg/1214509286, J. Differ. Geom. 18 (1983), 157-162. (1983) Zbl0517.53044MR0697987DOI10.4310/jdg/1214509286
  19. Ecker, K., Regularity Theory for Mean Curvature Flow, Progress in Nonlinear Differential Equations and Their Applications 57. Boston, MA: Birkhäuser (2004). (2004) Zbl1058.53054MR2024995
  20. Escher, J., Prüss, J., Simonett, G., A new approach to the regularity of solutions for parabolic equations, Evolution Equations. Proceedings in honor of the 60th birthdays of P. Bénilan, J. A. Goldstein and R. Nagel. New York, NY: Marcel Dekker. Lect. Notes Pure Appl. Math. 234 (2003), 167-190. (2003) Zbl1070.35009MR2073744
  21. Giga, Y., Surface Evolution Equations. A level set approach, Monographs in Mathematics 99. Basel: Birkhäuser (2006). (2006) Zbl1096.53039MR2238463
  22. Guidetti, D., A maximal regularity result with applications to parabolic problems with nonhomogeneous boundary conditions, Rend. Semin. Mat. Univ. Padova 84 (1990), 1-37 (1991). (1991) MR1101280
  23. Hieber, M., Rehberg, J., 10.1137/070683829, SIAM J. Math. Anal. 40 (2008), 292-305. (2008) Zbl1221.35194MR2403322DOI10.1137/070683829
  24. Huisken, G., Polden, A., Geometric evolution equations for hypersurfaces, Calculus of variations and geometric evolution problems. (Cetraro, 1996), Berlin: Springer. Lect. Notes Math. 1713 (1999), 45-84. (1999) Zbl0942.35047MR1731639
  25. Ladyženskaja, O. A., Solonnikov, V. A., Ural'ceva, N. N., Linear and Quasilinear Equations of Parabolic Type, Moskva: Izdat. `Nauka' (1967), Russian. (1967) MR0241822
  26. Luckhaus, S., Sturzenhecker, T., 10.1007/BF01205007, Calc. Var. Partial Differ. Equ. 3 (1995), 253-271. (1995) Zbl0821.35003MR1386964DOI10.1007/BF01205007
  27. Lunardi, A., Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and their Applications. 16. Basel: Birkhäuser (1995). (1995) Zbl0816.35001MR1329547
  28. Lunardi, A., Interpolation Theory. 2nd ed, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) 9. Pisa: Edizioni della Normale (2009). (2009) Zbl1171.41001MR2523200
  29. Mikula, K., Ševčovič, D., 10.1007/s00791-004-0131-6, Comput. Vis. Sci. 6 (2004), 211-225. (2004) MR2071441DOI10.1007/s00791-004-0131-6
  30. Prüss, J., Schnaubelt, R., 10.1006/jmaa.2000.7247, J. Math. Anal. Appl. 256 (2001), 405-430. (2001) Zbl0994.35076MR1821747DOI10.1006/jmaa.2000.7247
  31. Prüss, J., Maximal regularity for evolution equations in L p -spaces, Conf. Semin. Mat. Univ. Bari (2002), 1-39 (2003). (2003) MR1988408
  32. Saal, J., Strong solutions for the Navier-Stokes equations on bounded and unbounded domains with a moving boundary, Electron. J. Differ. Equ., Conf. 15 (2007), 365-375. (2007) MR2316145
  33. Simonett, G., The Willmore flow near spheres, Differ. Integral Equ. 14 (2001), 1005-1014. (2001) Zbl1161.35429MR1827100
  34. Zeidler, E., Nonlinear Functional Analysis and its Applications. Volume I: Fixed-point theorems. Translated from the German by Peter R. Wadsack, New York: Springer-Verlag (1993). (1993) Zbl0794.47033MR0816732
  35. Zhu, X.-P., Lectures on Mean Curvature Flows, AMS/IP Studies in Advanced Mathematics 32. Providence, RI: American Mathematical Society (AMS), Somerville: International Press (2002). (2002) Zbl1197.53087MR1931534

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.