Page 1

Displaying 1 – 4 of 4

Showing per page

Finite volume schemes for the generalized subjective surface equation in image segmentation

Karol Mikula, Mariana Remešíková (2009)


In this paper, we describe an efficient method for 3D image segmentation. The method uses a PDE model – the so called generalized subjective surface equation which is an equation of advection-diffusion type. The main goal is to develop an efficient and stable numerical method for solving this problem. The numerical solution is based on semi-implicit time discretization and flux-based level set finite volume space discretization. The space discretization is discussed in details and we introduce three...

Lagrangian evolution approach to surface-patch quadrangulation

Martin Húska, Matej Medl'a, Karol Mikula, Serena Morigi (2021)

Applications of Mathematics

We present a method for the generation of a pure quad mesh approximating a discrete manifold of arbitrary topology that preserves the patch layout characterizing the intrinsic object structure. A three-step procedure constitutes the core of our approach which first extracts the patch layout of the object by a topological partitioning of the digital shape, then computes the minimal surface given by the boundaries of the patch layout (basic quad layout) and then evolves it towards the object boundaries....

Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow

Sahbi Boussandel, Ralph Chill, Eva Fašangová (2012)

Czechoslovak Mathematical Journal

Local well-posedness of the curve shortening flow, that is, local existence, uniqueness and smooth dependence of solutions on initial data, is proved by applying the Local Inverse Function Theorem and L 2 -maximal regularity results for linear parabolic equations. The application of the Local Inverse Function Theorem leads to a particularly short proof which gives in addition the space-time regularity of the solutions. The method may be applied to general nonlinear evolution equations, but is presented...

Stability and consistency of the semi-implicit co-volume scheme for regularized mean curvature flow equation in level set formulation

Angela Handlovičová, Karol Mikula (2008)

Applications of Mathematics

We show stability and consistency of the linear semi-implicit complementary volume numerical scheme for solving the regularized, in the sense of Evans and Spruck, mean curvature flow equation in the level set formulation. The numerical method is based on the finite volume methodology using the so-called complementary volumes to a finite element triangulation. The scheme gives the solution in an efficient and unconditionally stable way.

Currently displaying 1 – 4 of 4

Page 1