Stochastic evolution equations driven by Liouville fractional Brownian motion
Zdzisław Brzeźniak; Jan van Neerven; Donna Salopek
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 1, page 1-27
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBrzeźniak, Zdzisław, van Neerven, Jan, and Salopek, Donna. "Stochastic evolution equations driven by Liouville fractional Brownian motion." Czechoslovak Mathematical Journal 62.1 (2012): 1-27. <http://eudml.org/doc/246136>.
@article{Brzeźniak2012,
abstract = {Let $H$ be a Hilbert space and $E$ a Banach space. We set up a theory of stochastic integration of $\{\mathcal \{L\}\}(H,E)$-valued functions with respect to $H$-cylindrical Liouville fractional Brownian motion with arbitrary Hurst parameter $0<\beta <1$. For $0<\beta <\frac\{1\}\{2\}$ we show that a function $\Phi \colon (0,T)\rightarrow \{\mathcal \{L\}\}(H,E)$ is stochastically integrable with respect to an $H$-cylindrical Liouville fractional Brownian motion if and only if it is stochastically integrable with respect to an $H$-cylindrical fractional Brownian motion. We apply our results to stochastic evolution equations \[ \{\rm d\}U(t) = AU(t) \{\rm d\}t + B \{\rm d\}W\_H^\beta (t) \]
driven by an $H$-cylindrical Liouville fractional Brownian motion, and prove existence, uniqueness and space-time regularity of mild solutions under various assumptions on the Banach space $E$, the operators $A\colon \mathcal \{D\}(A)\rightarrow E$ and $B\colon H\rightarrow E$, and the Hurst parameter $\beta $. As an application it is shown that second-order parabolic SPDEs on bounded domains in $\mathbb \{R\}^d$, driven by space-time noise which is white in space and Liouville fractional in time, admit a mild solution if $\frac\{1\}\{4\}d<\beta <1$.},
author = {Brzeźniak, Zdzisław, van Neerven, Jan, Salopek, Donna},
journal = {Czechoslovak Mathematical Journal},
keywords = {(Liouville) fractional Brownian motion; fractional integration; stochastic evolution equations; Liouville fractional Brownian motion; stochastic evolution equation; fractional Ornstein-Uhlenbeck process},
language = {eng},
number = {1},
pages = {1-27},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stochastic evolution equations driven by Liouville fractional Brownian motion},
url = {http://eudml.org/doc/246136},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Brzeźniak, Zdzisław
AU - van Neerven, Jan
AU - Salopek, Donna
TI - Stochastic evolution equations driven by Liouville fractional Brownian motion
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 1
EP - 27
AB - Let $H$ be a Hilbert space and $E$ a Banach space. We set up a theory of stochastic integration of ${\mathcal {L}}(H,E)$-valued functions with respect to $H$-cylindrical Liouville fractional Brownian motion with arbitrary Hurst parameter $0<\beta <1$. For $0<\beta <\frac{1}{2}$ we show that a function $\Phi \colon (0,T)\rightarrow {\mathcal {L}}(H,E)$ is stochastically integrable with respect to an $H$-cylindrical Liouville fractional Brownian motion if and only if it is stochastically integrable with respect to an $H$-cylindrical fractional Brownian motion. We apply our results to stochastic evolution equations \[ {\rm d}U(t) = AU(t) {\rm d}t + B {\rm d}W_H^\beta (t) \]
driven by an $H$-cylindrical Liouville fractional Brownian motion, and prove existence, uniqueness and space-time regularity of mild solutions under various assumptions on the Banach space $E$, the operators $A\colon \mathcal {D}(A)\rightarrow E$ and $B\colon H\rightarrow E$, and the Hurst parameter $\beta $. As an application it is shown that second-order parabolic SPDEs on bounded domains in $\mathbb {R}^d$, driven by space-time noise which is white in space and Liouville fractional in time, admit a mild solution if $\frac{1}{4}d<\beta <1$.
LA - eng
KW - (Liouville) fractional Brownian motion; fractional integration; stochastic evolution equations; Liouville fractional Brownian motion; stochastic evolution equation; fractional Ornstein-Uhlenbeck process
UR - http://eudml.org/doc/246136
ER -
References
top- Anh, V. V., Grecksch, W. A., A fractional stochastic evolution equation driven by fractional Brownian motion, Monte Carlo Methods Appl. 9 (2003), 189-199. (2003) Zbl1049.60056MR2009368
- Alòs, E., Mazet, O., Nualart, D., 10.1214/aop/1008956692, Ann. Probab. 29 (2001), 766-801. (2001) MR1849177DOI10.1214/aop/1008956692
- Biagini, F., Hu, Y., Øksendal, B., Zhang, T., Stochastic Calculus for Fractional Brownian Motion and Applications. Probability and its Applications, Springer London (2008). (2008) MR2387368
- Brze'zniak, Z., 10.1080/17442509708834122, Stochastics Stochastics Rep. 61 (1997), 245-295. (1997) MR1488138DOI10.1080/17442509708834122
- Brze'zniak, Z., Neerven, J. M. A. M. van, 10.1215/kjm/1250283728, J. Math. Kyoto Univ. 43 (2003), 261-303. (2003) MR2051026DOI10.1215/kjm/1250283728
- Brze'zniak, Z., Zabczyk, J., 10.1007/s11118-009-9149-1, Potential Anal. 32 (2010), 153-188. (2010) MR2584982DOI10.1007/s11118-009-9149-1
- Caithamer, P., 10.1142/S0219493705001286, Stoch. Dyn. 5 (2005), 45-64. (2005) Zbl1083.60053MR2118754DOI10.1142/S0219493705001286
- Carmona, R., Fouque, J.-P., Vestal, D., 10.1007/s00780-009-0098-8, Finance Stoch. 13 (2009), 613-633. (2009) MR2519846DOI10.1007/s00780-009-0098-8
- Prato, G. Da, Zabczyk, J., Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications, Vol. 44, Cambridge University Press Cambridge (2008). (2008) MR1207136
- Decreusefond, L., Üstünel, A. S., 10.1023/A:1008634027843, Potential Anal. 10 (1999), 177-214. (1999) Zbl0924.60034MR1677455DOI10.1023/A:1008634027843
- Dettweiler, J., Weis, L., Neerven, J. M. A. M. van, 10.1080/07362990600753577, Stochastic Anal. Appl. 24 (2006), 843-869. (2006) MR2241096DOI10.1080/07362990600753577
- Duncan, T. E., Pasik-Duncan, B., Maslowski, B., 10.1142/S0219493702000340, Stoch. Dyn. 2 (2002), 225-250. (2002) Zbl1040.60054MR1912142DOI10.1142/S0219493702000340
- Fernique, X., Intégrabilité des vecteurs gaussiens, C. R. Acad. Sci. Paris, Sér. A 270 (1970), 1698-1699 French. (1970) Zbl0206.19002MR0266263
- Feyel, D., Pradelle, A. de La, 10.1023/A:1008630211913, Potential Anal. 10 (1999), 273-288. (1999) Zbl0944.60045MR1696137DOI10.1023/A:1008630211913
- Goldys, B., Neerven, J. M. A. M. van, 10.1023/A:1023261101091, Acta Appl. Math. 76 (2003), 283-330 Revised version: arXiv:math/0606785. (2003) MR1976297DOI10.1023/A:1023261101091
- Grecksch, W., Roth, C., Anh, V. V., 10.1080/07362990802565084, Stochastic Anal. Appl. 27 (2009), 149-175. (2009) Zbl1158.60364MR2473144DOI10.1080/07362990802565084
- Guasoni, P., 10.1111/j.1467-9965.2006.00283.x, Math. Finance 16 (2006), 569-582. (2006) Zbl1133.91421MR2239592DOI10.1111/j.1467-9965.2006.00283.x
- Gubinelli, M., Lejay, A., Tindel, S., 10.1007/s11118-006-9013-5, Potential Anal. 25 (2006), 307-326. (2006) Zbl1103.60062MR2255351DOI10.1007/s11118-006-9013-5
- Hairer, M., Ohashi, A., 10.1214/009117906000001141, Ann. Probab. 35 (2007), 1950-1977. (2007) Zbl1129.60052MR2349580DOI10.1214/009117906000001141
- Hu, Y., 10.1007/s00245-001-0001-2, Appl. Math. Optimization 43 (2001), 221-243. (2001) Zbl0993.60065MR1885698DOI10.1007/s00245-001-0001-2
- Hu, Y., Øksendal, B., Zhang, T., 10.1081/PDE-120028841, Commun. Partial. Diff. Equations 29 (2004), 1-23. (2004) MR2038141DOI10.1081/PDE-120028841
- Jumarie, G., 10.1108/03684920210436336, Kybernetes 31 (2002), 1050-1058. (2002) Zbl1113.37316DOI10.1108/03684920210436336
- Jumarie, G., 10.1016/j.mcm.2005.10.003, Math. Comput. Modelling 44 (2006), 231-254. (2006) Zbl1130.92043MR2239054DOI10.1016/j.mcm.2005.10.003
- Kalton, N. J., Neerven, J. M. A. M. van, Veraar, M. C., Weis, L., 10.1002/mana.200510598, Math. Nachr. 281 (2008), 238-252. (2008) MR2387363DOI10.1002/mana.200510598
- Kalton, N. J., Weis, L., The -calculus and square function estimates, In preparation. Zbl1111.47020
- Leland, W., Taqqu, M., Willinger, W., Wilson, D., 10.1109/90.282603, IEEE/ACM Trans. Networking 2 (1994), 1-15. (1994) DOI10.1109/90.282603
- Mandelbrot, B. B., Ness, J. W. Van, 10.1137/1010093, SIAM Rev. 10 (1968), 422-437. (1968) MR0242239DOI10.1137/1010093
- Maslowski, B., Nualart, D., 10.1016/S0022-1236(02)00065-4, J. Funct. Anal. 202 (2003), 277-305. (2003) Zbl1027.60060MR1994773DOI10.1016/S0022-1236(02)00065-4
- Maslowski, B., Schmalfuss, B., 10.1081/SAP-200029498, Stochastic Anal. Appl. 22 (2004), 1577-1607. (2004) Zbl1062.60060MR2095071DOI10.1081/SAP-200029498
- Neerven, J. M. A. M. van, -radonifying operators—a survey, Proceedings CMA 44 (2010), 1-61. (2010) MR2655391
- Neerven, J. M. A. M. van, Stochastic Evolution Equations. Lecture Notes of the Internet Seminar 2007/08, OpenCourseWare, TU Delft, http://ocw.tudelft.nl, .
- Neerven, J. M. A. M. van, Veraar, M. C., Weis, L., 10.1214/009117906000001006, Ann. Probab. 35 (2007), 1438-1478. (2007) MR2330977DOI10.1214/009117906000001006
- Neerven, J. M. A. M. van, Veraar, M. C., Weis, L., Conditions for stochastic integrability in UMD Banach spaces, Inn: Banach Spaces and their Applications in Analysis: In Honor of Nigel Kalton's 60th Birthday. De Gruyter Proceedings in Mathematics Walter De Gruyter Berlin (2007), 127-146. (2007) MR2374704
- Neerven, J. M. A. M. van, Veraar, M. C., Weis, L., 10.1016/j.jfa.2008.03.015, J. Funct. Anal. 255 (2008), 940-993. (2008) MR2433958DOI10.1016/j.jfa.2008.03.015
- Neerven, J. M. A. M. van, Weis, L., 10.4064/sm166-2-2, Stud. Math. 166 (2005), 131-170. (2005) MR2109586DOI10.4064/sm166-2-2
- Nualart, D., Fractional Brownian motion: stochastic calculus and applications, In: Proceedings of the International Congress of Mathematicians. Volume III: Invited Lectures, Madrid, Spain, August 22-30, 2006 European Mathematical Society Zürich (2006), 1541-1562. (2006) Zbl1102.60033MR2275741
- Ohashi, A., 10.1214/08-AAP586, Ann. Appl. Probab. 19 (2009), 1553-1580. (2009) Zbl1188.91229MR2538080DOI10.1214/08-AAP586
- Palmer, T. N., Shutts, G. J., Hagedorn, R., Doblas-Reyes, F. J., Jung, T., Leutbecher, M., 10.1146/annurev.earth.33.092203.122552, Annu. Rev. Earth Planet. Sci. 33 (2005), 163-193. (2005) MR2153320DOI10.1146/annurev.earth.33.092203.122552
- Palmer, T. N., A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models, Q. J. Meteorological Soc. 127 (2001) B 279-304.
- Pasik-Duncan, B., Duncan, T. E., Maslowski, B., Linear stochastic equations in a Hilbert space with a fractional Brownian motion, In: Stochastic Processes, Optimization, and Control Theory: Applications in Financial Engineering, Queueing Networks, and Manufacturing Systems. International Series in Operations Research & Management Science Springer New York (2006), 201-221. (2006) Zbl1133.60015MR2353483
- Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, 44, Springer New York (1983). (1983) MR0710486
- Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach New York (1993). (1993) Zbl0818.26003MR1347689
- Triebel, H., Interpolation Theory, Function Spaces, Differential Operators. North-Holland Math. Library, vol. 18, North-Holland Amsterdam (1978). (1978) MR0503903
- Tindel, S., Tudor, C. A., Viens, F., 10.1007/s00440-003-0282-2, Probab. Theory Relat. Fields 127 (2003), 186-204. (2003) Zbl1036.60056MR2013981DOI10.1007/s00440-003-0282-2
- Weis, L., 10.1007/PL00004457, Math. Ann. 319 (2001), 735-758. (2001) MR1825406DOI10.1007/PL00004457
- Willinger, W., Taqqu, M., Leland, W. E., Wilson, D. V., 10.1214/ss/1177010131, Stat. Sci. 10 (1995), 67-85. (1995) Zbl1148.90310DOI10.1214/ss/1177010131
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.