Stochastic evolution equations driven by Liouville fractional Brownian motion

Zdzisław Brzeźniak; Jan van Neerven; Donna Salopek

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 1, page 1-27
  • ISSN: 0011-4642

Abstract

top
Let H be a Hilbert space and E a Banach space. We set up a theory of stochastic integration of ( H , E ) -valued functions with respect to H -cylindrical Liouville fractional Brownian motion with arbitrary Hurst parameter 0 < β < 1 . For 0 < β < 1 2 we show that a function Φ : ( 0 , T ) ( H , E ) is stochastically integrable with respect to an H -cylindrical Liouville fractional Brownian motion if and only if it is stochastically integrable with respect to an H -cylindrical fractional Brownian motion. We apply our results to stochastic evolution equations d U ( t ) = A U ( t ) d t + B d W H β ( t ) driven by an H -cylindrical Liouville fractional Brownian motion, and prove existence, uniqueness and space-time regularity of mild solutions under various assumptions on the Banach space E , the operators A : 𝒟 ( A ) E and B : H E , and the Hurst parameter β . As an application it is shown that second-order parabolic SPDEs on bounded domains in d , driven by space-time noise which is white in space and Liouville fractional in time, admit a mild solution if 1 4 d < β < 1 .

How to cite

top

Brzeźniak, Zdzisław, van Neerven, Jan, and Salopek, Donna. "Stochastic evolution equations driven by Liouville fractional Brownian motion." Czechoslovak Mathematical Journal 62.1 (2012): 1-27. <http://eudml.org/doc/246136>.

@article{Brzeźniak2012,
abstract = {Let $H$ be a Hilbert space and $E$ a Banach space. We set up a theory of stochastic integration of $\{\mathcal \{L\}\}(H,E)$-valued functions with respect to $H$-cylindrical Liouville fractional Brownian motion with arbitrary Hurst parameter $0<\beta <1$. For $0<\beta <\frac\{1\}\{2\}$ we show that a function $\Phi \colon (0,T)\rightarrow \{\mathcal \{L\}\}(H,E)$ is stochastically integrable with respect to an $H$-cylindrical Liouville fractional Brownian motion if and only if it is stochastically integrable with respect to an $H$-cylindrical fractional Brownian motion. We apply our results to stochastic evolution equations \[ \{\rm d\}U(t) = AU(t) \{\rm d\}t + B \{\rm d\}W\_H^\beta (t) \] driven by an $H$-cylindrical Liouville fractional Brownian motion, and prove existence, uniqueness and space-time regularity of mild solutions under various assumptions on the Banach space $E$, the operators $A\colon \mathcal \{D\}(A)\rightarrow E$ and $B\colon H\rightarrow E$, and the Hurst parameter $\beta $. As an application it is shown that second-order parabolic SPDEs on bounded domains in $\mathbb \{R\}^d$, driven by space-time noise which is white in space and Liouville fractional in time, admit a mild solution if $\frac\{1\}\{4\}d<\beta <1$.},
author = {Brzeźniak, Zdzisław, van Neerven, Jan, Salopek, Donna},
journal = {Czechoslovak Mathematical Journal},
keywords = {(Liouville) fractional Brownian motion; fractional integration; stochastic evolution equations; Liouville fractional Brownian motion; stochastic evolution equation; fractional Ornstein-Uhlenbeck process},
language = {eng},
number = {1},
pages = {1-27},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stochastic evolution equations driven by Liouville fractional Brownian motion},
url = {http://eudml.org/doc/246136},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Brzeźniak, Zdzisław
AU - van Neerven, Jan
AU - Salopek, Donna
TI - Stochastic evolution equations driven by Liouville fractional Brownian motion
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 1
EP - 27
AB - Let $H$ be a Hilbert space and $E$ a Banach space. We set up a theory of stochastic integration of ${\mathcal {L}}(H,E)$-valued functions with respect to $H$-cylindrical Liouville fractional Brownian motion with arbitrary Hurst parameter $0<\beta <1$. For $0<\beta <\frac{1}{2}$ we show that a function $\Phi \colon (0,T)\rightarrow {\mathcal {L}}(H,E)$ is stochastically integrable with respect to an $H$-cylindrical Liouville fractional Brownian motion if and only if it is stochastically integrable with respect to an $H$-cylindrical fractional Brownian motion. We apply our results to stochastic evolution equations \[ {\rm d}U(t) = AU(t) {\rm d}t + B {\rm d}W_H^\beta (t) \] driven by an $H$-cylindrical Liouville fractional Brownian motion, and prove existence, uniqueness and space-time regularity of mild solutions under various assumptions on the Banach space $E$, the operators $A\colon \mathcal {D}(A)\rightarrow E$ and $B\colon H\rightarrow E$, and the Hurst parameter $\beta $. As an application it is shown that second-order parabolic SPDEs on bounded domains in $\mathbb {R}^d$, driven by space-time noise which is white in space and Liouville fractional in time, admit a mild solution if $\frac{1}{4}d<\beta <1$.
LA - eng
KW - (Liouville) fractional Brownian motion; fractional integration; stochastic evolution equations; Liouville fractional Brownian motion; stochastic evolution equation; fractional Ornstein-Uhlenbeck process
UR - http://eudml.org/doc/246136
ER -

References

top
  1. Anh, V. V., Grecksch, W. A., A fractional stochastic evolution equation driven by fractional Brownian motion, Monte Carlo Methods Appl. 9 (2003), 189-199. (2003) Zbl1049.60056MR2009368
  2. Alòs, E., Mazet, O., Nualart, D., 10.1214/aop/1008956692, Ann. Probab. 29 (2001), 766-801. (2001) MR1849177DOI10.1214/aop/1008956692
  3. Biagini, F., Hu, Y., Øksendal, B., Zhang, T., Stochastic Calculus for Fractional Brownian Motion and Applications. Probability and its Applications, Springer London (2008). (2008) MR2387368
  4. Brze'zniak, Z., 10.1080/17442509708834122, Stochastics Stochastics Rep. 61 (1997), 245-295. (1997) MR1488138DOI10.1080/17442509708834122
  5. Brze'zniak, Z., Neerven, J. M. A. M. van, 10.1215/kjm/1250283728, J. Math. Kyoto Univ. 43 (2003), 261-303. (2003) MR2051026DOI10.1215/kjm/1250283728
  6. Brze'zniak, Z., Zabczyk, J., 10.1007/s11118-009-9149-1, Potential Anal. 32 (2010), 153-188. (2010) MR2584982DOI10.1007/s11118-009-9149-1
  7. Caithamer, P., 10.1142/S0219493705001286, Stoch. Dyn. 5 (2005), 45-64. (2005) Zbl1083.60053MR2118754DOI10.1142/S0219493705001286
  8. Carmona, R., Fouque, J.-P., Vestal, D., 10.1007/s00780-009-0098-8, Finance Stoch. 13 (2009), 613-633. (2009) MR2519846DOI10.1007/s00780-009-0098-8
  9. Prato, G. Da, Zabczyk, J., Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications, Vol. 44, Cambridge University Press Cambridge (2008). (2008) MR1207136
  10. Decreusefond, L., Üstünel, A. S., 10.1023/A:1008634027843, Potential Anal. 10 (1999), 177-214. (1999) Zbl0924.60034MR1677455DOI10.1023/A:1008634027843
  11. Dettweiler, J., Weis, L., Neerven, J. M. A. M. van, 10.1080/07362990600753577, Stochastic Anal. Appl. 24 (2006), 843-869. (2006) MR2241096DOI10.1080/07362990600753577
  12. Duncan, T. E., Pasik-Duncan, B., Maslowski, B., 10.1142/S0219493702000340, Stoch. Dyn. 2 (2002), 225-250. (2002) Zbl1040.60054MR1912142DOI10.1142/S0219493702000340
  13. Fernique, X., Intégrabilité des vecteurs gaussiens, C. R. Acad. Sci. Paris, Sér. A 270 (1970), 1698-1699 French. (1970) Zbl0206.19002MR0266263
  14. Feyel, D., Pradelle, A. de La, 10.1023/A:1008630211913, Potential Anal. 10 (1999), 273-288. (1999) Zbl0944.60045MR1696137DOI10.1023/A:1008630211913
  15. Goldys, B., Neerven, J. M. A. M. van, 10.1023/A:1023261101091, Acta Appl. Math. 76 (2003), 283-330 Revised version: arXiv:math/0606785. (2003) MR1976297DOI10.1023/A:1023261101091
  16. Grecksch, W., Roth, C., Anh, V. V., 10.1080/07362990802565084, Stochastic Anal. Appl. 27 (2009), 149-175. (2009) Zbl1158.60364MR2473144DOI10.1080/07362990802565084
  17. Guasoni, P., 10.1111/j.1467-9965.2006.00283.x, Math. Finance 16 (2006), 569-582. (2006) Zbl1133.91421MR2239592DOI10.1111/j.1467-9965.2006.00283.x
  18. Gubinelli, M., Lejay, A., Tindel, S., 10.1007/s11118-006-9013-5, Potential Anal. 25 (2006), 307-326. (2006) Zbl1103.60062MR2255351DOI10.1007/s11118-006-9013-5
  19. Hairer, M., Ohashi, A., 10.1214/009117906000001141, Ann. Probab. 35 (2007), 1950-1977. (2007) Zbl1129.60052MR2349580DOI10.1214/009117906000001141
  20. Hu, Y., 10.1007/s00245-001-0001-2, Appl. Math. Optimization 43 (2001), 221-243. (2001) Zbl0993.60065MR1885698DOI10.1007/s00245-001-0001-2
  21. Hu, Y., Øksendal, B., Zhang, T., 10.1081/PDE-120028841, Commun. Partial. Diff. Equations 29 (2004), 1-23. (2004) MR2038141DOI10.1081/PDE-120028841
  22. Jumarie, G., 10.1108/03684920210436336, Kybernetes 31 (2002), 1050-1058. (2002) Zbl1113.37316DOI10.1108/03684920210436336
  23. Jumarie, G., 10.1016/j.mcm.2005.10.003, Math. Comput. Modelling 44 (2006), 231-254. (2006) Zbl1130.92043MR2239054DOI10.1016/j.mcm.2005.10.003
  24. Kalton, N. J., Neerven, J. M. A. M. van, Veraar, M. C., Weis, L., 10.1002/mana.200510598, Math. Nachr. 281 (2008), 238-252. (2008) MR2387363DOI10.1002/mana.200510598
  25. Kalton, N. J., Weis, L., The H -calculus and square function estimates, In preparation. Zbl1111.47020
  26. Leland, W., Taqqu, M., Willinger, W., Wilson, D., 10.1109/90.282603, IEEE/ACM Trans. Networking 2 (1994), 1-15. (1994) DOI10.1109/90.282603
  27. Mandelbrot, B. B., Ness, J. W. Van, 10.1137/1010093, SIAM Rev. 10 (1968), 422-437. (1968) MR0242239DOI10.1137/1010093
  28. Maslowski, B., Nualart, D., 10.1016/S0022-1236(02)00065-4, J. Funct. Anal. 202 (2003), 277-305. (2003) Zbl1027.60060MR1994773DOI10.1016/S0022-1236(02)00065-4
  29. Maslowski, B., Schmalfuss, B., 10.1081/SAP-200029498, Stochastic Anal. Appl. 22 (2004), 1577-1607. (2004) Zbl1062.60060MR2095071DOI10.1081/SAP-200029498
  30. Neerven, J. M. A. M. van, γ -radonifying operators—a survey, Proceedings CMA 44 (2010), 1-61. (2010) MR2655391
  31. Neerven, J. M. A. M. van, Stochastic Evolution Equations. Lecture Notes of the Internet Seminar 2007/08, OpenCourseWare, TU Delft, http://ocw.tudelft.nl, . 
  32. Neerven, J. M. A. M. van, Veraar, M. C., Weis, L., 10.1214/009117906000001006, Ann. Probab. 35 (2007), 1438-1478. (2007) MR2330977DOI10.1214/009117906000001006
  33. Neerven, J. M. A. M. van, Veraar, M. C., Weis, L., Conditions for stochastic integrability in UMD Banach spaces, Inn: Banach Spaces and their Applications in Analysis: In Honor of Nigel Kalton's 60th Birthday. De Gruyter Proceedings in Mathematics Walter De Gruyter Berlin (2007), 127-146. (2007) MR2374704
  34. Neerven, J. M. A. M. van, Veraar, M. C., Weis, L., 10.1016/j.jfa.2008.03.015, J. Funct. Anal. 255 (2008), 940-993. (2008) MR2433958DOI10.1016/j.jfa.2008.03.015
  35. Neerven, J. M. A. M. van, Weis, L., 10.4064/sm166-2-2, Stud. Math. 166 (2005), 131-170. (2005) MR2109586DOI10.4064/sm166-2-2
  36. Nualart, D., Fractional Brownian motion: stochastic calculus and applications, In: Proceedings of the International Congress of Mathematicians. Volume III: Invited Lectures, Madrid, Spain, August 22-30, 2006 European Mathematical Society Zürich (2006), 1541-1562. (2006) Zbl1102.60033MR2275741
  37. Ohashi, A., 10.1214/08-AAP586, Ann. Appl. Probab. 19 (2009), 1553-1580. (2009) Zbl1188.91229MR2538080DOI10.1214/08-AAP586
  38. Palmer, T. N., Shutts, G. J., Hagedorn, R., Doblas-Reyes, F. J., Jung, T., Leutbecher, M., 10.1146/annurev.earth.33.092203.122552, Annu. Rev. Earth Planet. Sci. 33 (2005), 163-193. (2005) MR2153320DOI10.1146/annurev.earth.33.092203.122552
  39. Palmer, T. N., A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models, Q. J. Meteorological Soc. 127 (2001) B 279-304. 
  40. Pasik-Duncan, B., Duncan, T. E., Maslowski, B., Linear stochastic equations in a Hilbert space with a fractional Brownian motion, In: Stochastic Processes, Optimization, and Control Theory: Applications in Financial Engineering, Queueing Networks, and Manufacturing Systems. International Series in Operations Research & Management Science Springer New York (2006), 201-221. (2006) Zbl1133.60015MR2353483
  41. Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, 44, Springer New York (1983). (1983) MR0710486
  42. Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach New York (1993). (1993) Zbl0818.26003MR1347689
  43. Triebel, H., Interpolation Theory, Function Spaces, Differential Operators. North-Holland Math. Library, vol. 18, North-Holland Amsterdam (1978). (1978) MR0503903
  44. Tindel, S., Tudor, C. A., Viens, F., 10.1007/s00440-003-0282-2, Probab. Theory Relat. Fields 127 (2003), 186-204. (2003) Zbl1036.60056MR2013981DOI10.1007/s00440-003-0282-2
  45. Weis, L., 10.1007/PL00004457, Math. Ann. 319 (2001), 735-758. (2001) MR1825406DOI10.1007/PL00004457
  46. Willinger, W., Taqqu, M., Leland, W. E., Wilson, D. V., 10.1214/ss/1177010131, Stat. Sci. 10 (1995), 67-85. (1995) Zbl1148.90310DOI10.1214/ss/1177010131

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.