Symplectic Killing spinors

Svatopluk Krýsl

Commentationes Mathematicae Universitatis Carolinae (2012)

  • Volume: 53, Issue: 1, page 19-35
  • ISSN: 0010-2628

Abstract

top
Let ( M , ω ) be a symplectic manifold admitting a metaplectic structure (a symplectic analogue of the Riemannian spin structure) and a torsion-free symplectic connection . Symplectic Killing spinor fields for this structure are sections of the symplectic spinor bundle satisfying a certain first order partial differential equation and they are the main object of this paper. We derive a necessary condition which has to be satisfied by a symplectic Killing spinor field. Using this condition one may easily compute the symplectic Killing spinor fields for the standard symplectic vector spaces and the round sphere S 2 equipped with the volume form of the round metric.

How to cite

top

Krýsl, Svatopluk. "Symplectic Killing spinors." Commentationes Mathematicae Universitatis Carolinae 53.1 (2012): 19-35. <http://eudml.org/doc/246174>.

@article{Krýsl2012,
abstract = {Let $(M,\omega )$ be a symplectic manifold admitting a metaplectic structure (a symplectic analogue of the Riemannian spin structure) and a torsion-free symplectic connection $\nabla $. Symplectic Killing spinor fields for this structure are sections of the symplectic spinor bundle satisfying a certain first order partial differential equation and they are the main object of this paper. We derive a necessary condition which has to be satisfied by a symplectic Killing spinor field. Using this condition one may easily compute the symplectic Killing spinor fields for the standard symplectic vector spaces and the round sphere $S^2$ equipped with the volume form of the round metric.},
author = {Krýsl, Svatopluk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Fedosov manifolds; symplectic spinors; symplectic Killing spinors; symplectic Dirac operators; Segal-Shale-Weil representation; Fedosov manifold; symplectic spinor; symplectic Killing spinor; symplectic Dirac operator; Segal-Shale-Weil representation},
language = {eng},
number = {1},
pages = {19-35},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Symplectic Killing spinors},
url = {http://eudml.org/doc/246174},
volume = {53},
year = {2012},
}

TY - JOUR
AU - Krýsl, Svatopluk
TI - Symplectic Killing spinors
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 1
SP - 19
EP - 35
AB - Let $(M,\omega )$ be a symplectic manifold admitting a metaplectic structure (a symplectic analogue of the Riemannian spin structure) and a torsion-free symplectic connection $\nabla $. Symplectic Killing spinor fields for this structure are sections of the symplectic spinor bundle satisfying a certain first order partial differential equation and they are the main object of this paper. We derive a necessary condition which has to be satisfied by a symplectic Killing spinor field. Using this condition one may easily compute the symplectic Killing spinor fields for the standard symplectic vector spaces and the round sphere $S^2$ equipped with the volume form of the round metric.
LA - eng
KW - Fedosov manifolds; symplectic spinors; symplectic Killing spinors; symplectic Dirac operators; Segal-Shale-Weil representation; Fedosov manifold; symplectic spinor; symplectic Killing spinor; symplectic Dirac operator; Segal-Shale-Weil representation
UR - http://eudml.org/doc/246174
ER -

References

top
  1. Fedosov B.V., A simple geometrical construction of deformation quantization, J. Differ. Geom. 40 (1994), no. 2, 213–238. Zbl0812.53034MR1293654
  2. Friedrich T., Dirac-Operatoren in der Riemannschen Geometrie, Friedr. Vieweg & Sohn, Braunschweig, 1997. Zbl0887.58060MR1476425
  3. Gelfand I., Retakh V., Shubin M., 10.1006/aima.1998.1727, Adv. Math. 136 (1998), no. 1, 104–140. Zbl0945.53047MR1623673DOI10.1006/aima.1998.1727
  4. Green M.B., Hull C.M., 10.1016/0370-2693(89)91009-5, Phys. Lett. B 225 (1989), 57–65. MR1006387DOI10.1016/0370-2693(89)91009-5
  5. Habermann K., 10.1007/BF01120331, Ann. Global Anal. 13 (1995), no. 2, 155–168. Zbl0842.58042MR1336211DOI10.1007/BF01120331
  6. Habermann K., Habermann L., 10.1007/978-3-540-33421-7_4, Lecture Notes in Mathematics, 1887, Springer, Berlin, 2006. Zbl1102.53032MR2252919DOI10.1007/978-3-540-33421-7_4
  7. Kashiwara M., Vergne M., 10.1007/BF01389900, Invent. Math. 44 (1978), no. 1, 1–47. MR0463359DOI10.1007/BF01389900
  8. Kostant B., Symplectic Spinors, Symposia Mathematica, Vol. XIV, Academic Press, London, 1974, pp. 139–152. Zbl0321.58015MR0400304
  9. Krýsl S., Howe type duality for the metaplectic group acting on symplectic spinor valued forms, J. Lie Theory, to appear; electronically available at math.RT/0508.2904. 
  10. Krýsl S., Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds, Arch. Math. (Brno) 43 (2007), 467–484. MR2381789
  11. Krýsl S., 10.1016/j.geomphys.2010.04.004, J. Geom. Phys. 60 (2010), no. 9, 1251–1261; electronically available at math.DG/0812.4230. MR2654098DOI10.1016/j.geomphys.2010.04.004
  12. Shale D., 10.1090/S0002-9947-1962-0137504-6, Trans. Amer. Math. Soc. 103 (1962), 149–167. Zbl0171.46901MR0137504DOI10.1090/S0002-9947-1962-0137504-6
  13. Tondeur P., Affine Zusammenhänge auf Mannigfaltigkeiten mit fast-symplektischer Struktur, Comment. Math. Helv. 36 (1961), 262–268. MR0138068
  14. Vaisman I., 10.1007/BF01339231, Monatsh. Math. 100 (1985), 299–327. MR0814206DOI10.1007/BF01339231
  15. Vogan D., Unitary representations and complex analysis, ; electronically available at http://www-math.mit.edu/dav/venice.pdf. Zbl1143.22002
  16. Weil A., 10.1007/BF02391012, Acta Math. 111 (1964), 143–211. MR0165033DOI10.1007/BF02391012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.