Symplectic Killing spinors
Commentationes Mathematicae Universitatis Carolinae (2012)
- Volume: 53, Issue: 1, page 19-35
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKrýsl, Svatopluk. "Symplectic Killing spinors." Commentationes Mathematicae Universitatis Carolinae 53.1 (2012): 19-35. <http://eudml.org/doc/246174>.
@article{Krýsl2012,
abstract = {Let $(M,\omega )$ be a symplectic manifold admitting a metaplectic structure (a symplectic analogue of the Riemannian spin structure) and a torsion-free symplectic connection $\nabla $. Symplectic Killing spinor fields for this structure are sections of the symplectic spinor bundle satisfying a certain first order partial differential equation and they are the main object of this paper. We derive a necessary condition which has to be satisfied by a symplectic Killing spinor field. Using this condition one may easily compute the symplectic Killing spinor fields for the standard symplectic vector spaces and the round sphere $S^2$ equipped with the volume form of the round metric.},
author = {Krýsl, Svatopluk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Fedosov manifolds; symplectic spinors; symplectic Killing spinors; symplectic Dirac operators; Segal-Shale-Weil representation; Fedosov manifold; symplectic spinor; symplectic Killing spinor; symplectic Dirac operator; Segal-Shale-Weil representation},
language = {eng},
number = {1},
pages = {19-35},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Symplectic Killing spinors},
url = {http://eudml.org/doc/246174},
volume = {53},
year = {2012},
}
TY - JOUR
AU - Krýsl, Svatopluk
TI - Symplectic Killing spinors
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 1
SP - 19
EP - 35
AB - Let $(M,\omega )$ be a symplectic manifold admitting a metaplectic structure (a symplectic analogue of the Riemannian spin structure) and a torsion-free symplectic connection $\nabla $. Symplectic Killing spinor fields for this structure are sections of the symplectic spinor bundle satisfying a certain first order partial differential equation and they are the main object of this paper. We derive a necessary condition which has to be satisfied by a symplectic Killing spinor field. Using this condition one may easily compute the symplectic Killing spinor fields for the standard symplectic vector spaces and the round sphere $S^2$ equipped with the volume form of the round metric.
LA - eng
KW - Fedosov manifolds; symplectic spinors; symplectic Killing spinors; symplectic Dirac operators; Segal-Shale-Weil representation; Fedosov manifold; symplectic spinor; symplectic Killing spinor; symplectic Dirac operator; Segal-Shale-Weil representation
UR - http://eudml.org/doc/246174
ER -
References
top- Fedosov B.V., A simple geometrical construction of deformation quantization, J. Differ. Geom. 40 (1994), no. 2, 213–238. Zbl0812.53034MR1293654
- Friedrich T., Dirac-Operatoren in der Riemannschen Geometrie, Friedr. Vieweg & Sohn, Braunschweig, 1997. Zbl0887.58060MR1476425
- Gelfand I., Retakh V., Shubin M., 10.1006/aima.1998.1727, Adv. Math. 136 (1998), no. 1, 104–140. Zbl0945.53047MR1623673DOI10.1006/aima.1998.1727
- Green M.B., Hull C.M., 10.1016/0370-2693(89)91009-5, Phys. Lett. B 225 (1989), 57–65. MR1006387DOI10.1016/0370-2693(89)91009-5
- Habermann K., 10.1007/BF01120331, Ann. Global Anal. 13 (1995), no. 2, 155–168. Zbl0842.58042MR1336211DOI10.1007/BF01120331
- Habermann K., Habermann L., 10.1007/978-3-540-33421-7_4, Lecture Notes in Mathematics, 1887, Springer, Berlin, 2006. Zbl1102.53032MR2252919DOI10.1007/978-3-540-33421-7_4
- Kashiwara M., Vergne M., 10.1007/BF01389900, Invent. Math. 44 (1978), no. 1, 1–47. MR0463359DOI10.1007/BF01389900
- Kostant B., Symplectic Spinors, Symposia Mathematica, Vol. XIV, Academic Press, London, 1974, pp. 139–152. Zbl0321.58015MR0400304
- Krýsl S., Howe type duality for the metaplectic group acting on symplectic spinor valued forms, J. Lie Theory, to appear; electronically available at math.RT/0508.2904.
- Krýsl S., Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds, Arch. Math. (Brno) 43 (2007), 467–484. MR2381789
- Krýsl S., 10.1016/j.geomphys.2010.04.004, J. Geom. Phys. 60 (2010), no. 9, 1251–1261; electronically available at math.DG/0812.4230. MR2654098DOI10.1016/j.geomphys.2010.04.004
- Shale D., 10.1090/S0002-9947-1962-0137504-6, Trans. Amer. Math. Soc. 103 (1962), 149–167. Zbl0171.46901MR0137504DOI10.1090/S0002-9947-1962-0137504-6
- Tondeur P., Affine Zusammenhänge auf Mannigfaltigkeiten mit fast-symplektischer Struktur, Comment. Math. Helv. 36 (1961), 262–268. MR0138068
- Vaisman I., 10.1007/BF01339231, Monatsh. Math. 100 (1985), 299–327. MR0814206DOI10.1007/BF01339231
- Vogan D., Unitary representations and complex analysis, ; electronically available at http://www-math.mit.edu/dav/venice.pdf. Zbl1143.22002
- Weil A., 10.1007/BF02391012, Acta Math. 111 (1964), 143–211. MR0165033DOI10.1007/BF02391012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.